Sorption of Atenolol, Sulfamethoxazole and Carbamazepine onto Soil Aggregates from the Illuvial Horizon of the Haplic Luvisol on Loess
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F18%3A43898748" target="_blank" >RIV/60076658:12520/18:43898748 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/18:76680
Výsledek na webu
<a href="https://www.agriculturejournals.cz/publicFiles/82_2018-SWR.pdf" target="_blank" >https://www.agriculturejournals.cz/publicFiles/82_2018-SWR.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17221/82/2018-SWR" target="_blank" >10.17221/82/2018-SWR</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sorption of Atenolol, Sulfamethoxazole and Carbamazepine onto Soil Aggregates from the Illuvial Horizon of the Haplic Luvisol on Loess
Popis výsledku v původním jazyce
The leakage of pharmaceuticals present in soils towards groundwater is largely controlled by sorption of those compounds in soils. In some soils, soil aggregates are covered by coatings, which may have considerably different composition in comparison to that in an inner part of the aggregates. The aim of this study was to evaluate the sorption of three pharmaceuticals, which were applied in single or all compounds solutions, onto soil samples taken from the Bt horizon of a Haplic Luvisol. Analyses were performed on three types of disturbed soil samples: (1) entire aggregates, (2) aggregates from which coatings were removed, and (3) clay-organic coatings. Sorption of atenolol onto material from coatings was slightly higher than that onto material from the inner parts of the aggregates. On the other hand, sorption of sulfamethoxazole onto material from the coatings was lower than that from the aggregate interior. Both associates with a dominant fraction of clay particles (that are mostly negatively charged) in the coatings in comparison to soil composition in interiors and thus larger cation exchange capacity, which increased sorption of the positively charged atenolol and decreased sorption of the negatively charged sulfamethoxazole. Sorption of carbamazepine, which was in neutral form, did not substantially differ. The sorption of all three compounds did not decrease due to the competition between these compounds for the same sorption sites when applied simultaneously. Atenolol sorption was similar for both applications. Sorption of sulfamethoxazole increased when applied in solution with the other two compounds in comparison to its negligible sorption measured for the single compound solution likely due to sorption of the positively charged molecules of atenolol onto the negatively charged surface of soil components and reduction of repulsion between the soil components and the negatively charged molecules of sulfamethoxazole. Carbamazepine sorption also increased probably due to ionization of molecules due to dipole - induced dipole interaction between non-polar and polar molecules in solution.
Název v anglickém jazyce
Sorption of Atenolol, Sulfamethoxazole and Carbamazepine onto Soil Aggregates from the Illuvial Horizon of the Haplic Luvisol on Loess
Popis výsledku anglicky
The leakage of pharmaceuticals present in soils towards groundwater is largely controlled by sorption of those compounds in soils. In some soils, soil aggregates are covered by coatings, which may have considerably different composition in comparison to that in an inner part of the aggregates. The aim of this study was to evaluate the sorption of three pharmaceuticals, which were applied in single or all compounds solutions, onto soil samples taken from the Bt horizon of a Haplic Luvisol. Analyses were performed on three types of disturbed soil samples: (1) entire aggregates, (2) aggregates from which coatings were removed, and (3) clay-organic coatings. Sorption of atenolol onto material from coatings was slightly higher than that onto material from the inner parts of the aggregates. On the other hand, sorption of sulfamethoxazole onto material from the coatings was lower than that from the aggregate interior. Both associates with a dominant fraction of clay particles (that are mostly negatively charged) in the coatings in comparison to soil composition in interiors and thus larger cation exchange capacity, which increased sorption of the positively charged atenolol and decreased sorption of the negatively charged sulfamethoxazole. Sorption of carbamazepine, which was in neutral form, did not substantially differ. The sorption of all three compounds did not decrease due to the competition between these compounds for the same sorption sites when applied simultaneously. Atenolol sorption was similar for both applications. Sorption of sulfamethoxazole increased when applied in solution with the other two compounds in comparison to its negligible sorption measured for the single compound solution likely due to sorption of the positively charged molecules of atenolol onto the negatively charged surface of soil components and reduction of repulsion between the soil components and the negatively charged molecules of sulfamethoxazole. Carbamazepine sorption also increased probably due to ionization of molecules due to dipole - induced dipole interaction between non-polar and polar molecules in solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soil and Water Research
ISSN
1801-5395
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
177-183
Kód UT WoS článku
000437750400007
EID výsledku v databázi Scopus
2-s2.0-85049770001