Image Based Individual Identification of Sumatra Barb (Puntigrus Tetrazona)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F19%3A43899244" target="_blank" >RIV/60076658:12520/19:43899244 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-17938-0_11" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-17938-0_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-17938-0_11" target="_blank" >10.1007/978-3-030-17938-0_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image Based Individual Identification of Sumatra Barb (Puntigrus Tetrazona)
Popis výsledku v původním jazyce
The paper deal with the individual fish identification of the same species based on digital image of the fish. The proof of concept of image based individual identification is introduced on the small group fish. The method is completely noninvasive and can overcome the disadvantages of standard invasive identification such as tagging. The experiments proved the hypothesis that the visible patterns on Sumatra Barb (Puntigrus tetrazona) body can be used for individual identification. In the first step, the database of 43 fish (was created by the taking of the images of fish in different pose. Images were taken in an aquarium with a water. After data collection, data was processed by the image processing methods to determine the features. The simple nearest neighbor classification was used to test individual identification. The accuracy of classification was 100%. The method proved the hypothesis that the visible pattern on Sumatra Barb can be used for fully automated individual fish identification. It can be substituted current practice of fish identification based on tagging and marking. The long-term stability of the pattern and the classification power for large fish group should be studied in the future. © 2019, Springer Nature Switzerland AG.
Název v anglickém jazyce
Image Based Individual Identification of Sumatra Barb (Puntigrus Tetrazona)
Popis výsledku anglicky
The paper deal with the individual fish identification of the same species based on digital image of the fish. The proof of concept of image based individual identification is introduced on the small group fish. The method is completely noninvasive and can overcome the disadvantages of standard invasive identification such as tagging. The experiments proved the hypothesis that the visible patterns on Sumatra Barb (Puntigrus tetrazona) body can be used for individual identification. In the first step, the database of 43 fish (was created by the taking of the images of fish in different pose. Images were taken in an aquarium with a water. After data collection, data was processed by the image processing methods to determine the features. The simple nearest neighbor classification was used to test individual identification. The accuracy of classification was 100%. The method proved the hypothesis that the visible pattern on Sumatra Barb can be used for fully automated individual fish identification. It can be substituted current practice of fish identification based on tagging and marking. The long-term stability of the pattern and the classification power for large fish group should be studied in the future. © 2019, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
40103 - Fishery
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018099" target="_blank" >LM2018099: Jihočeské výzkumné centrum akvakultury a biodiverzity hydrocenóz</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-17937-3
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
4
Strana od-do
116-119
Název nakladatele
Springer Verlag
Místo vydání
Granada, Spain
Místo konání akce
Granada, Spain
Datum konání akce
8. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—