The role of energy reserves in common carp performance inferred from phenotypic and genetic parameters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F21%3A43902647" target="_blank" >RIV/60076658:12520/21:43902647 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.aquaculture.2021.736799" target="_blank" >https://doi.org/10.1016/j.aquaculture.2021.736799</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aquaculture.2021.736799" target="_blank" >10.1016/j.aquaculture.2021.736799</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The role of energy reserves in common carp performance inferred from phenotypic and genetic parameters
Popis výsledku v původním jazyce
In temperate zones, energy reserves of fish are closely related to survival during the first winter of their life. In this study, the genetic and phenotypic background of the accumulation, mobilization and utilization of energy reserves was investigated in Amur mirror carp. To achieve this, the role of traits related to energy reserves on fish performance during the first winter and further periods of rearing was investigated. The experimental stock was established by four full-factorial matings of 5 dams and 10 sires to generate up to 200 full-sibling families. The offspring were sampled before and after the first winter rearing period. Seasonal variation in direct and indirect measures of energy status was examined using Fulton's condition factor (FC), hepato-somatic index (HSI), visceral index (VSI_NO), glycogen, fat and protein in hepatopancreas (HP) and muscle fat content. Other performance traits were also recorded (weight, resistance to koi herpesvirus disease). All traits related to energy reserves, except HP protein, were significantly lower after the first winter. Overall, HP glycogen and fat from muscle, HP and viscera were mobilized during winter. However, genetic correlations between same traits recorded in autumn and spring were lower than 0.8 for most of the traits, implying that not all families responded to overwintering in a similar manner. Heritability also differed before and after the first winter. Before the first winter, all traits had low to medium heritability (0.05-0.35), but after the winter the same traits were moderately or highly heritable (0.22-0.58). Interestingly, HP glycogen traits, unlike HP fat and HP protein, and HSI recorded in yearlings were positively genetically correlated with survival during the third growing season (rg = 0.49-0.72). This study provides the first evidence of a genetically based strategy for energy mobilization related to overwintering of common carp. Measuring of FC and HSI could be used to monitor the energy status of common carp and to provide a supplementary tool for management of carp stocks.
Název v anglickém jazyce
The role of energy reserves in common carp performance inferred from phenotypic and genetic parameters
Popis výsledku anglicky
In temperate zones, energy reserves of fish are closely related to survival during the first winter of their life. In this study, the genetic and phenotypic background of the accumulation, mobilization and utilization of energy reserves was investigated in Amur mirror carp. To achieve this, the role of traits related to energy reserves on fish performance during the first winter and further periods of rearing was investigated. The experimental stock was established by four full-factorial matings of 5 dams and 10 sires to generate up to 200 full-sibling families. The offspring were sampled before and after the first winter rearing period. Seasonal variation in direct and indirect measures of energy status was examined using Fulton's condition factor (FC), hepato-somatic index (HSI), visceral index (VSI_NO), glycogen, fat and protein in hepatopancreas (HP) and muscle fat content. Other performance traits were also recorded (weight, resistance to koi herpesvirus disease). All traits related to energy reserves, except HP protein, were significantly lower after the first winter. Overall, HP glycogen and fat from muscle, HP and viscera were mobilized during winter. However, genetic correlations between same traits recorded in autumn and spring were lower than 0.8 for most of the traits, implying that not all families responded to overwintering in a similar manner. Heritability also differed before and after the first winter. Before the first winter, all traits had low to medium heritability (0.05-0.35), but after the winter the same traits were moderately or highly heritable (0.22-0.58). Interestingly, HP glycogen traits, unlike HP fat and HP protein, and HSI recorded in yearlings were positively genetically correlated with survival during the third growing season (rg = 0.49-0.72). This study provides the first evidence of a genetically based strategy for energy mobilization related to overwintering of common carp. Measuring of FC and HSI could be used to monitor the energy status of common carp and to provide a supplementary tool for management of carp stocks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40103 - Fishery
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aquaculture
ISSN
0044-8486
e-ISSN
—
Svazek periodika
541
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000683034500011
EID výsledku v databázi Scopus
2-s2.0-85106314254