What's in the water? - Target and suspect screening of contaminants of emerging concern in raw water and drinking water from Europe and Asia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F21%3A43904057" target="_blank" >RIV/60076658:12520/21:43904057 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.watres.2021.117099" target="_blank" >https://doi.org/10.1016/j.watres.2021.117099</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.watres.2021.117099" target="_blank" >10.1016/j.watres.2021.117099</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
What's in the water? - Target and suspect screening of contaminants of emerging concern in raw water and drinking water from Europe and Asia
Popis výsledku v původním jazyce
There is growing worry that drinking water can be affected by contaminants of emerging concern (CECs), potentially threatening human health. In this study, a wide range of CECs ( n = 177), including pharmaceuticals, pesticides, perfluoroalkyl substances (PFASs) and other compounds, were analysed in raw water and in drinking water collected from drinking water treatment plants (DWTPs) in Europe and Asia ( n = 13). The impact of human activities was reflected in large numbers of compounds detected ( n = 115) and high variation in concentrations in the raw water (range 15-7995 ng L -1 for E177 CECs). The variation was less pronounced in drinking water, with total concentration ranging from 35 to 919 ng L -1 . Treatment efficiency was on average 65 +/- 28%, with wide variation between different DWTPs. The DWTP with the highest ECEC concentrations in raw water had the most efficient treatment procedure (average treatment efficiency 89%), whereas the DWTP with the lowest E177 CEC concentration in the raw water had the lowest average treatment efficiency (2.3%). Suspect screening was performed for 500 compounds ranked high as chemicals of concern for drinking water, using a prioritisation tool (SusTool). Overall, 208 features of interest were discovered and three were confirmed with reference standards. There was co-variation between removal efficiency in DWTPs for the target compounds and the suspected features detected using suspect screening, implying that removal of known contaminants can be used to predict overall removal of potential CECs for drinking water production. Our results can be of high value for DWTPs around the globe in their planning for future treatment strategies to meet the increasing concern about human ex-posure to unknown CECs present in their drinking water. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Název v anglickém jazyce
What's in the water? - Target and suspect screening of contaminants of emerging concern in raw water and drinking water from Europe and Asia
Popis výsledku anglicky
There is growing worry that drinking water can be affected by contaminants of emerging concern (CECs), potentially threatening human health. In this study, a wide range of CECs ( n = 177), including pharmaceuticals, pesticides, perfluoroalkyl substances (PFASs) and other compounds, were analysed in raw water and in drinking water collected from drinking water treatment plants (DWTPs) in Europe and Asia ( n = 13). The impact of human activities was reflected in large numbers of compounds detected ( n = 115) and high variation in concentrations in the raw water (range 15-7995 ng L -1 for E177 CECs). The variation was less pronounced in drinking water, with total concentration ranging from 35 to 919 ng L -1 . Treatment efficiency was on average 65 +/- 28%, with wide variation between different DWTPs. The DWTP with the highest ECEC concentrations in raw water had the most efficient treatment procedure (average treatment efficiency 89%), whereas the DWTP with the lowest E177 CEC concentration in the raw water had the lowest average treatment efficiency (2.3%). Suspect screening was performed for 500 compounds ranked high as chemicals of concern for drinking water, using a prioritisation tool (SusTool). Overall, 208 features of interest were discovered and three were confirmed with reference standards. There was co-variation between removal efficiency in DWTPs for the target compounds and the suspected features detected using suspect screening, implying that removal of known contaminants can be used to predict overall removal of potential CECs for drinking water production. Our results can be of high value for DWTPs around the globe in their planning for future treatment strategies to meet the increasing concern about human ex-posure to unknown CECs present in their drinking water. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Water Research
ISSN
0043-1354
e-ISSN
—
Svazek periodika
198
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
56
Strana od-do
—
Kód UT WoS článku
000651349000001
EID výsledku v databázi Scopus
2-s2.0-85105896436