Image-Based Automatic Individual Identification of Fish without Obvious Patterns on the Body (Scale Pattern)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F22%3A43904489" target="_blank" >RIV/60076658:12520/22:43904489 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/app12115401" target="_blank" >https://doi.org/10.3390/app12115401</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app12115401" target="_blank" >10.3390/app12115401</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image-Based Automatic Individual Identification of Fish without Obvious Patterns on the Body (Scale Pattern)
Popis výsledku v původním jazyce
The precision fish farming concept has been widely investigated in research and is highly desirable in aquaculture as it creates opportunities for precisely controlling and monitoring fish cultivation processes and increasing fish welfare. The automatic identification of individual fish could be one of the keys to enabling individual fish treatment. In a previous study, we already demonstrated that the visible patterns on a fish's body can be used for the non-invasive individual identification of fishes from the same species (with obvious skin patterns, such as salmonids) over long-term periods. The aim of this study was to verify the possibility of using fully-automatic non-invasive photo-identification of individual fish based on natural marks on the fish's body without any obvious skin patterns. This approach is an alternative to stressful invasive tagging and marking techniques. Scale patterns on the body and operculum, as well as lateral line shapes, were used as discriminative features for the identification of individuals in a closed group of fish. We used two fish species: the European seabass Dicentrarchus labrax and the common carp Cyprinus carpio. The identification method was tested on four experimental data sets for each fish species: two separate short-term data sets (pattern variability test) and two long-term data sets (pattern stability test) for European seabass (300 individual fish) and common carp (32 individual fish). The accuracy of classification was 100% for both fish species in both the short-term and long-term experiments. According to these results, the methods used for automatic non-invasive image-based individual-fish identification can also be used for fish species without obvious skin patterns.
Název v anglickém jazyce
Image-Based Automatic Individual Identification of Fish without Obvious Patterns on the Body (Scale Pattern)
Popis výsledku anglicky
The precision fish farming concept has been widely investigated in research and is highly desirable in aquaculture as it creates opportunities for precisely controlling and monitoring fish cultivation processes and increasing fish welfare. The automatic identification of individual fish could be one of the keys to enabling individual fish treatment. In a previous study, we already demonstrated that the visible patterns on a fish's body can be used for the non-invasive individual identification of fishes from the same species (with obvious skin patterns, such as salmonids) over long-term periods. The aim of this study was to verify the possibility of using fully-automatic non-invasive photo-identification of individual fish based on natural marks on the fish's body without any obvious skin patterns. This approach is an alternative to stressful invasive tagging and marking techniques. Scale patterns on the body and operculum, as well as lateral line shapes, were used as discriminative features for the identification of individuals in a closed group of fish. We used two fish species: the European seabass Dicentrarchus labrax and the common carp Cyprinus carpio. The identification method was tested on four experimental data sets for each fish species: two separate short-term data sets (pattern variability test) and two long-term data sets (pattern stability test) for European seabass (300 individual fish) and common carp (32 individual fish). The accuracy of classification was 100% for both fish species in both the short-term and long-term experiments. According to these results, the methods used for automatic non-invasive image-based individual-fish identification can also be used for fish species without obvious skin patterns.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40103 - Fishery
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018099" target="_blank" >LM2018099: Jihočeské výzkumné centrum akvakultury a biodiverzity hydrocenóz</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences-Basel
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
12
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
nestrankovano
Kód UT WoS článku
000809129800001
EID výsledku v databázi Scopus
—