Comparative performance analysis of simple U-Net, residual attention U-Net, and VGG16-U-Net for inventory inland water bodies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F24%3A43908037" target="_blank" >RIV/60076658:12520/24:43908037 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.acags.2023.100150" target="_blank" >https://doi.org/10.1016/j.acags.2023.100150</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.acags.2023.100150" target="_blank" >10.1016/j.acags.2023.100150</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative performance analysis of simple U-Net, residual attention U-Net, and VGG16-U-Net for inventory inland water bodies
Popis výsledku v původním jazyce
Inland water bodies play a vital role at all scales in the terrestrial water balance and Earth’s climate variability. Thus, an inventory of inland waters is crucially important for hydrologic and ecological studies and management. Therefore, the main aim of this study was to develop a deep learning-based method for inventorying and mapping inland water bodies using the RGB band of high-resolution satellite imagery automatically and accurately. The Sentinel-2 Harmonized dataset, together with ZABAGED-validated ground truth, was used as the main dataset for the model training step. Three different deep learning algorithms based on U-Net architecture were employed to segment inland waters, including a simple U-Net, Residual Attention U-Net, and VGG16-U-Net. All three algorithms were trained using a combination of Sentinel-2 visible bands (Red [B04; 665nm], Green [B03; 560nm], and Blue [B02; 490 nm]) at a 10-meter spatial resolution. The Residual Attention U-Net achieved the highest computational cost due to the increased number of trainable parameters. The VGG16-U-Net had the shortest run time and the lowest number of trainable parameters, attributed to its architecture compared to the simple and Residual Attention U-Net architectures, respectively. As a result, the VGG16-U-Net provided the best segmentation results with a mean-IoU score of 0.9850, a slight improvement compared to other proposed U-Net-based architectures. Although the accuracy of the model based on VGG16-U-Net does not make a difference from Residual Attention U-Net, the computation costs for training VGG16-U-Net were dramatically lower than Residual Attention U-Net.
Název v anglickém jazyce
Comparative performance analysis of simple U-Net, residual attention U-Net, and VGG16-U-Net for inventory inland water bodies
Popis výsledku anglicky
Inland water bodies play a vital role at all scales in the terrestrial water balance and Earth’s climate variability. Thus, an inventory of inland waters is crucially important for hydrologic and ecological studies and management. Therefore, the main aim of this study was to develop a deep learning-based method for inventorying and mapping inland water bodies using the RGB band of high-resolution satellite imagery automatically and accurately. The Sentinel-2 Harmonized dataset, together with ZABAGED-validated ground truth, was used as the main dataset for the model training step. Three different deep learning algorithms based on U-Net architecture were employed to segment inland waters, including a simple U-Net, Residual Attention U-Net, and VGG16-U-Net. All three algorithms were trained using a combination of Sentinel-2 visible bands (Red [B04; 665nm], Green [B03; 560nm], and Blue [B02; 490 nm]) at a 10-meter spatial resolution. The Residual Attention U-Net achieved the highest computational cost due to the increased number of trainable parameters. The VGG16-U-Net had the shortest run time and the lowest number of trainable parameters, attributed to its architecture compared to the simple and Residual Attention U-Net architectures, respectively. As a result, the VGG16-U-Net provided the best segmentation results with a mean-IoU score of 0.9850, a slight improvement compared to other proposed U-Net-based architectures. Although the accuracy of the model based on VGG16-U-Net does not make a difference from Residual Attention U-Net, the computation costs for training VGG16-U-Net were dramatically lower than Residual Attention U-Net.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Computing and Geosciences
ISSN
2590-1974
e-ISSN
2590-1974
Svazek periodika
21
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001143898700001
EID výsledku v databázi Scopus
2-s2.0-85181001193