Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Towards Discrimination of Plant Species by Machine Vision: Advanced Statistical Analysis of Chlorophyll Fluorescence Transients

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12640%2F09%3A00010019" target="_blank" >RIV/60076658:12640/09:00010019 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67179843:_____/09:00341134

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Towards Discrimination of Plant Species by Machine Vision: Advanced Statistical Analysis of Chlorophyll Fluorescence Transients

  • Popis výsledku v původním jazyce

    Automatic discrimination of plant species is required for precision farming and for advanced environmental protection. For this task, reflected sunlight has already been tested whereas fluorescence emission has been only scarcely considered. Here, we investigated the discriminative potential of chlorophyll fluorescence imaging in a case study using three closely related plant species of the family Lamiaceae. We compared discriminative potential of eight classifiers and four feature selection methods toidentify the fluorescence parameters that can yield the highest contrast between the species. Three plant species: Ocimum basilicum, Origanum majorana and Origanum vulgare were grown separately as well as in pots where all three species were mixed. First, eight statistical classifiers were applied and tested in simulated species discrimination. The performance of the Quadratic Discriminant Classifier was found to be the most efficient. This classifier was further applied in combination w

  • Název v anglickém jazyce

    Towards Discrimination of Plant Species by Machine Vision: Advanced Statistical Analysis of Chlorophyll Fluorescence Transients

  • Popis výsledku anglicky

    Automatic discrimination of plant species is required for precision farming and for advanced environmental protection. For this task, reflected sunlight has already been tested whereas fluorescence emission has been only scarcely considered. Here, we investigated the discriminative potential of chlorophyll fluorescence imaging in a case study using three closely related plant species of the family Lamiaceae. We compared discriminative potential of eight classifiers and four feature selection methods toidentify the fluorescence parameters that can yield the highest contrast between the species. Three plant species: Ocimum basilicum, Origanum majorana and Origanum vulgare were grown separately as well as in pots where all three species were mixed. First, eight statistical classifiers were applied and tested in simulated species discrimination. The performance of the Quadratic Discriminant Classifier was found to be the most efficient. This classifier was further applied in combination w

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BO - Biofyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Fluorescence

  • ISSN

    1053-0509

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000269954700017

  • EID výsledku v databázi Scopus