Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discrimination of fish populations using parasites: Random Forests on a predictable? host-parasite system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F10%3A00353458" target="_blank" >RIV/60077344:_____/10:00353458 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discrimination of fish populations using parasites: Random Forests on a predictable? host-parasite system

  • Popis výsledku v původním jazyce

    We address the effect of spatial scale and temporal variation on model generality when forming predictive models for fish assignment using a new data mining approach, Random Forests (RF), to variable biological markers (parasite community data). Models were implemented for a fish host-parasite system sampled along the Mediterranean and Atlantic coasts of Spain. The main results are that (i) RF are well suited for multiclass population assignment using parasite communities in non-migratory fish; (ii) RFprovide an efficient means for model cross-validation on the baseline data and this allows sample size limitations in parasite tag studies to be tackled effectively; (iii) the performance of RF is dependent on the complexity and spatial extent/configuration of the problem; and (iv) the development of predictive models is strongly influenced by seasonal change and this stresses the importance of both temporal replication and model validation in parasite tagging studies.

  • Název v anglickém jazyce

    Discrimination of fish populations using parasites: Random Forests on a predictable? host-parasite system

  • Popis výsledku anglicky

    We address the effect of spatial scale and temporal variation on model generality when forming predictive models for fish assignment using a new data mining approach, Random Forests (RF), to variable biological markers (parasite community data). Models were implemented for a fish host-parasite system sampled along the Mediterranean and Atlantic coasts of Spain. The main results are that (i) RF are well suited for multiclass population assignment using parasite communities in non-migratory fish; (ii) RFprovide an efficient means for model cross-validation on the baseline data and this allows sample size limitations in parasite tag studies to be tackled effectively; (iii) the performance of RF is dependent on the complexity and spatial extent/configuration of the problem; and (iv) the development of predictive models is strongly influenced by seasonal change and this stresses the importance of both temporal replication and model validation in parasite tagging studies.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    GJ - Choroby a škůdci zvířat, veterinární medicina

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LC522" target="_blank" >LC522: ICHTYOPARAZITOLOGIE - centrum základního výzkumu</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Parasitology

  • ISSN

    0031-1820

  • e-ISSN

  • Svazek periodika

    137

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    000283794600011

  • EID výsledku v databázi Scopus