Discrimination of fish populations using parasites: Random Forests on a predictable? host-parasite system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F10%3A00353458" target="_blank" >RIV/60077344:_____/10:00353458 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discrimination of fish populations using parasites: Random Forests on a predictable? host-parasite system
Popis výsledku v původním jazyce
We address the effect of spatial scale and temporal variation on model generality when forming predictive models for fish assignment using a new data mining approach, Random Forests (RF), to variable biological markers (parasite community data). Models were implemented for a fish host-parasite system sampled along the Mediterranean and Atlantic coasts of Spain. The main results are that (i) RF are well suited for multiclass population assignment using parasite communities in non-migratory fish; (ii) RFprovide an efficient means for model cross-validation on the baseline data and this allows sample size limitations in parasite tag studies to be tackled effectively; (iii) the performance of RF is dependent on the complexity and spatial extent/configuration of the problem; and (iv) the development of predictive models is strongly influenced by seasonal change and this stresses the importance of both temporal replication and model validation in parasite tagging studies.
Název v anglickém jazyce
Discrimination of fish populations using parasites: Random Forests on a predictable? host-parasite system
Popis výsledku anglicky
We address the effect of spatial scale and temporal variation on model generality when forming predictive models for fish assignment using a new data mining approach, Random Forests (RF), to variable biological markers (parasite community data). Models were implemented for a fish host-parasite system sampled along the Mediterranean and Atlantic coasts of Spain. The main results are that (i) RF are well suited for multiclass population assignment using parasite communities in non-migratory fish; (ii) RFprovide an efficient means for model cross-validation on the baseline data and this allows sample size limitations in parasite tag studies to be tackled effectively; (iii) the performance of RF is dependent on the complexity and spatial extent/configuration of the problem; and (iv) the development of predictive models is strongly influenced by seasonal change and this stresses the importance of both temporal replication and model validation in parasite tagging studies.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
GJ - Choroby a škůdci zvířat, veterinární medicina
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC522" target="_blank" >LC522: ICHTYOPARAZITOLOGIE - centrum základního výzkumu</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Parasitology
ISSN
0031-1820
e-ISSN
—
Svazek periodika
137
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000283794600011
EID výsledku v databázi Scopus
—