Estimating the risk of swimmer's itch in surface waters A case study from Lake Baldeney, River Ruhr
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F16%3A00468315" target="_blank" >RIV/60077344:_____/16:00468315 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ijheh.2015.03.012" target="_blank" >http://dx.doi.org/10.1016/j.ijheh.2015.03.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijheh.2015.03.012" target="_blank" >10.1016/j.ijheh.2015.03.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating the risk of swimmer's itch in surface waters A case study from Lake Baldeney, River Ruhr
Popis výsledku v původním jazyce
Swimmer's itch is a zoonotic disease caused by certain digenean trematodes, in Europe most noticeably by bird schistosomes of the genus Trichobilharzia. These parasites require waterfowl and aquatic snails as final and intermediate hosts, respectively, to complete their life cycle. Swimmer's itch occurs when the free-swimming larvae emitted from snails, the cercariae, accidentally infect humans. Here the parasites cannot complete their life cycle but can cause allergic inflammatory responses of the skin. In the context of the joint BMBF project `Sichere Ruhr' (Safe Ruhr), which evaluates the Ruhr River as a potential bathing water, the occurrence of the causative agents of swimmer's itch in Lake Baldeney was studied. A total of 1741 snails was examined for the presence of trematode infections, including bird schistosomes. Snails infected with Trichobilharzia spp. were found at three sampling locations but showed low overall prevalences (0.6-3.0%). Based on parasite and host biology, risk factors were evaluated and discussed in the context of the potential use of Lake Baldeney as a bathing water. Although bird schistosomes only constitute a fraction of the trematode diversity occurring in natural snail populations and show low prevalence, they still pose an infection risk due to the high emission rates of cercariae from individual snail hosts. A wide variety of often interacting biotic and abiotic factors, as well as personal behaviour have an effect on the likelihood and severity of a human infection. Based on these risk factors, a number of possible preventive actions aiming at the disruption of the life cycle, or personal protective measures can be suggested. While absolute protection is impossible (unless swimming in natural waters is altogether avoided) some preventive measures can reduce the risk of human infections.
Název v anglickém jazyce
Estimating the risk of swimmer's itch in surface waters A case study from Lake Baldeney, River Ruhr
Popis výsledku anglicky
Swimmer's itch is a zoonotic disease caused by certain digenean trematodes, in Europe most noticeably by bird schistosomes of the genus Trichobilharzia. These parasites require waterfowl and aquatic snails as final and intermediate hosts, respectively, to complete their life cycle. Swimmer's itch occurs when the free-swimming larvae emitted from snails, the cercariae, accidentally infect humans. Here the parasites cannot complete their life cycle but can cause allergic inflammatory responses of the skin. In the context of the joint BMBF project `Sichere Ruhr' (Safe Ruhr), which evaluates the Ruhr River as a potential bathing water, the occurrence of the causative agents of swimmer's itch in Lake Baldeney was studied. A total of 1741 snails was examined for the presence of trematode infections, including bird schistosomes. Snails infected with Trichobilharzia spp. were found at three sampling locations but showed low overall prevalences (0.6-3.0%). Based on parasite and host biology, risk factors were evaluated and discussed in the context of the potential use of Lake Baldeney as a bathing water. Although bird schistosomes only constitute a fraction of the trematode diversity occurring in natural snail populations and show low prevalence, they still pose an infection risk due to the high emission rates of cercariae from individual snail hosts. A wide variety of often interacting biotic and abiotic factors, as well as personal behaviour have an effect on the likelihood and severity of a human infection. Based on these risk factors, a number of possible preventive actions aiming at the disruption of the life cycle, or personal protective measures can be suggested. While absolute protection is impossible (unless swimming in natural waters is altogether avoided) some preventive measures can reduce the risk of human infections.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EH - Ekologie – společenstva
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP505%2F10%2F1562" target="_blank" >GAP505/10/1562: Společenstva motolic jako modelový systém pro předpověď vlivu klimatických změn ve sladkovodních ekosystémech ve střední Evropě</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Hygiene and Environmental Health
ISSN
1438-4639
e-ISSN
—
Svazek periodika
219
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
7
Strana od-do
693-699
Kód UT WoS článku
000387521500007
EID výsledku v databázi Scopus
2-s2.0-84973230236