Effect of proteolytic and detoxification enzyme inhibitors on Bacillus thuringiensis var. israelensis tolerance in the mosquito Aedes aegypti
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F17%3A00472087" target="_blank" >RIV/60077344:_____/17:00472087 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/09583157.2016.1253828" target="_blank" >http://dx.doi.org/10.1080/09583157.2016.1253828</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/09583157.2016.1253828" target="_blank" >10.1080/09583157.2016.1253828</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of proteolytic and detoxification enzyme inhibitors on Bacillus thuringiensis var. israelensis tolerance in the mosquito Aedes aegypti
Popis výsledku v původním jazyce
Bacillus thuringiensis var. israelensis (Bti) is highly pathogenic to mosquito larvae and is widely used for mosquito control. Its mosquitocidal activity however is relatively low compared to many chemical insecticides. The detoxification mechanisms in the mosquito, among other things, might neutralize the Bti activity, resulting in resistance or tolerance. We tested whether or not the detoxification mechanisms against chemical insecticides might also operate against Bti, rendering it less effective. We targeted four enzymes in Aedes aegypti larvae involved in detoxification with inhibitors that have been used in resistance studies in chemical insecticides and assayed their effects on Bti toxicity. Results revealed that phenylmethanesulphonyl fluoride (PMSF), diethyl maleate, phenobarbital (PB), and piperonyl butoxide (PBO) altered Bti toxicity to various degrees. PMSF is a serine protease inhibitor that prevents Bti digestion and improves Bti activity. PB that induces several detoxifying enzymes had two different effects depending on the method of treatment. Mortality was higher when treatment with PB was discontinuous (149%) whereas with continuous treatment it was lower (101%). PBO, a typice cytochrome P450 inhibitor, increased Bti effect (159%). The combination of discontinuous pretreatment of larvae with PB followed by PBO had a synergistic effect and showed increased activity (146%). It appears that the mechanism for Bti resistance in mosquitoes is similar to that of chemical insecticides. Our studies indicate that we may be able to increase Bti activity by inhibiting some of the detoxification systems as active as broad spektrum chemical insecticides
Název v anglickém jazyce
Effect of proteolytic and detoxification enzyme inhibitors on Bacillus thuringiensis var. israelensis tolerance in the mosquito Aedes aegypti
Popis výsledku anglicky
Bacillus thuringiensis var. israelensis (Bti) is highly pathogenic to mosquito larvae and is widely used for mosquito control. Its mosquitocidal activity however is relatively low compared to many chemical insecticides. The detoxification mechanisms in the mosquito, among other things, might neutralize the Bti activity, resulting in resistance or tolerance. We tested whether or not the detoxification mechanisms against chemical insecticides might also operate against Bti, rendering it less effective. We targeted four enzymes in Aedes aegypti larvae involved in detoxification with inhibitors that have been used in resistance studies in chemical insecticides and assayed their effects on Bti toxicity. Results revealed that phenylmethanesulphonyl fluoride (PMSF), diethyl maleate, phenobarbital (PB), and piperonyl butoxide (PBO) altered Bti toxicity to various degrees. PMSF is a serine protease inhibitor that prevents Bti digestion and improves Bti activity. PB that induces several detoxifying enzymes had two different effects depending on the method of treatment. Mortality was higher when treatment with PB was discontinuous (149%) whereas with continuous treatment it was lower (101%). PBO, a typice cytochrome P450 inhibitor, increased Bti effect (159%). The combination of discontinuous pretreatment of larvae with PB followed by PBO had a synergistic effect and showed increased activity (146%). It appears that the mechanism for Bti resistance in mosquitoes is similar to that of chemical insecticides. Our studies indicate that we may be able to increase Bti activity by inhibiting some of the detoxification systems as active as broad spektrum chemical insecticides
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biocontrol Science and Technology
ISSN
0958-3157
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
169-179
Kód UT WoS článku
000395649800002
EID výsledku v databázi Scopus
2-s2.0-85013040933