Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting the toxicity of post-mining substrates, a case study based on laboratory tests, substrate chemistry, geographic information systems and remote sensing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F17%3A00477397" target="_blank" >RIV/60077344:_____/17:00477397 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/86652079:_____/17:00477397 RIV/00216208:11690/17:10337138 RIV/00216208:11310/17:10337138

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.ecoleng.2016.12.014" target="_blank" >http://dx.doi.org/10.1016/j.ecoleng.2016.12.014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ecoleng.2016.12.014" target="_blank" >10.1016/j.ecoleng.2016.12.014</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting the toxicity of post-mining substrates, a case study based on laboratory tests, substrate chemistry, geographic information systems and remote sensing

  • Popis výsledku v původním jazyce

    Approaches were evaluated for predicting the spatial distribution of phytotoxicity of post-mining substrates. Predictions were compared with empirical data measured in the field (a heap at a post-mining site) and laboratory. The study was performed in a highly variable 1-ha plot that was overlain with a regular grid of sampling points (with 5 m between adjacent grid points). At each of 21 points, soil pH, conductivity, and arsenic content were measured, and soil was sampled and used in a laboratory germination test with Sinapsis alba. At each grid point, a field germination test with S. alba was also conducted, and spontaneous vegetation was removed and weighed. At the same time, air-borne hyperspectral imagery data of the site were acquired, and field spectral characteristics of dominant substrates were measured. This enabled automatic substrate classification, which was used to map the spatial distribution of the substrates.S. alba germination in the laboratory was closely correlated with S. alba germination in the field (r = 0.918), and both were correlated with the biomass of spontaneously established vegetation in the field. Substrate pH and substrate type were the best predictors of S. alba germination at points between the grid points. S. alba germination was well predicted (P = 0.001) by (1) direct interpolation of toxicity between grid points (R-2 =0.51) and by (2) substrate classification based on hyperspectral images (R-2 = 0.56).

  • Název v anglickém jazyce

    Predicting the toxicity of post-mining substrates, a case study based on laboratory tests, substrate chemistry, geographic information systems and remote sensing

  • Popis výsledku anglicky

    Approaches were evaluated for predicting the spatial distribution of phytotoxicity of post-mining substrates. Predictions were compared with empirical data measured in the field (a heap at a post-mining site) and laboratory. The study was performed in a highly variable 1-ha plot that was overlain with a regular grid of sampling points (with 5 m between adjacent grid points). At each of 21 points, soil pH, conductivity, and arsenic content were measured, and soil was sampled and used in a laboratory germination test with Sinapsis alba. At each grid point, a field germination test with S. alba was also conducted, and spontaneous vegetation was removed and weighed. At the same time, air-borne hyperspectral imagery data of the site were acquired, and field spectral characteristics of dominant substrates were measured. This enabled automatic substrate classification, which was used to map the spatial distribution of the substrates.S. alba germination in the laboratory was closely correlated with S. alba germination in the field (r = 0.918), and both were correlated with the biomass of spontaneously established vegetation in the field. Substrate pH and substrate type were the best predictors of S. alba germination at points between the grid points. S. alba germination was well predicted (P = 0.001) by (1) direct interpolation of toxicity between grid points (R-2 =0.51) and by (2) substrate classification based on hyperspectral images (R-2 = 0.56).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ecological Engineering

  • ISSN

    0925-8574

  • e-ISSN

  • Svazek periodika

    100

  • Číslo periodika v rámci svazku

    Mar

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    7

  • Strana od-do

    56-62

  • Kód UT WoS článku

    000394062600006

  • EID výsledku v databázi Scopus

    2-s2.0-85007207171