DNA OF FREE-LIVING BODONIDS (EUGLENOZOA: KINETOPLASTEA) IN BAT ECTOPARASITES: POTENTIAL RELEVANCE TO THE EVOLUTION OF PARASITIC TRYPANOSOMATIDS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F17%3A00507393" target="_blank" >RIV/60077344:_____/17:00507393 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/17:10368660
Výsledek na webu
<a href="https://akademiai.com/doi/10.1556/004.2017.051" target="_blank" >https://akademiai.com/doi/10.1556/004.2017.051</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1556/004.2017.051" target="_blank" >10.1556/004.2017.051</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DNA OF FREE-LIVING BODONIDS (EUGLENOZOA: KINETOPLASTEA) IN BAT ECTOPARASITES: POTENTIAL RELEVANCE TO THE EVOLUTION OF PARASITIC TRYPANOSOMATIDS
Popis výsledku v původním jazyce
Kinetoplastids are flagellated protozoa, including principally free-living bodonids and exclusively parasitic trypanosomatids. In the most species-rich genus, Trypanosoma, more than thirty species were found to infect bats worldwide. Bat trypanosomes are also known to have played a significant role in the evolution of T. cruzi, a species with high veterinary medical significance. Although preliminary data attested the occurrence of bat trypanosomes in Hungary, these were never sought for with molecular methods. Therefore, amplification of an approx. 900-bp fragment of the 18S rRNA gene of kinetoplastids was attempted from 307 ixodid and 299 argasid ticks collected from bats, and from 207 cimicid bugs collected from or near bats in Hungary and Romania. Three samples, one per each bat ectoparasite group, were PCR positive. Sequencing revealed the presence of DNA from free-living bodonids (Bodo saltans and neobodonids), but no trypanosomes were detected. The most likely source of bodonid DNA detected here in engorged bat ectoparasites is the blood of their bat hosts. However, how bodonids were acquired by bats, can only be speculated. Bats are known to drink from freshwater bodies, i.e. the natural habitats of B. saltans and related species, allowing bats to ingest bodonids. Consequently, these results suggest that at least the DNA of bodonids might pass through the alimentary mucosa of bats into their circulation. The above findings highlight the importance of studying bats and other mammals for the occurrence of bodonids in their blood and excreta, with potential relevance to the evolution of free-living kinetoplastids towards parasitism.
Název v anglickém jazyce
DNA OF FREE-LIVING BODONIDS (EUGLENOZOA: KINETOPLASTEA) IN BAT ECTOPARASITES: POTENTIAL RELEVANCE TO THE EVOLUTION OF PARASITIC TRYPANOSOMATIDS
Popis výsledku anglicky
Kinetoplastids are flagellated protozoa, including principally free-living bodonids and exclusively parasitic trypanosomatids. In the most species-rich genus, Trypanosoma, more than thirty species were found to infect bats worldwide. Bat trypanosomes are also known to have played a significant role in the evolution of T. cruzi, a species with high veterinary medical significance. Although preliminary data attested the occurrence of bat trypanosomes in Hungary, these were never sought for with molecular methods. Therefore, amplification of an approx. 900-bp fragment of the 18S rRNA gene of kinetoplastids was attempted from 307 ixodid and 299 argasid ticks collected from bats, and from 207 cimicid bugs collected from or near bats in Hungary and Romania. Three samples, one per each bat ectoparasite group, were PCR positive. Sequencing revealed the presence of DNA from free-living bodonids (Bodo saltans and neobodonids), but no trypanosomes were detected. The most likely source of bodonid DNA detected here in engorged bat ectoparasites is the blood of their bat hosts. However, how bodonids were acquired by bats, can only be speculated. Bats are known to drink from freshwater bodies, i.e. the natural habitats of B. saltans and related species, allowing bats to ingest bodonids. Consequently, these results suggest that at least the DNA of bodonids might pass through the alimentary mucosa of bats into their circulation. The above findings highlight the importance of studying bats and other mammals for the occurrence of bodonids in their blood and excreta, with potential relevance to the evolution of free-living kinetoplastids towards parasitism.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40301 - Veterinary science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Veterinaria Hungarica
ISSN
0236-6290
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
10
Strana od-do
531-540
Kód UT WoS článku
000418337900008
EID výsledku v databázi Scopus
2-s2.0-85038625443