Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Soil organic matter decomposition and carbon sequestration in temperate coniferous forest soils affected by soluble and insoluble spruce needle fractions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F19%3A00505568" target="_blank" >RIV/60077344:_____/19:00505568 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/19:10403161

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0038071719302597?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038071719302597?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.soilbio.2019.107595" target="_blank" >10.1016/j.soilbio.2019.107595</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Soil organic matter decomposition and carbon sequestration in temperate coniferous forest soils affected by soluble and insoluble spruce needle fractions

  • Popis výsledku v původním jazyce

    Temperate forest soils are important carbon (C) sinks, where the C-stock is largely determined by the balance of leaf inputs and losses through respiration. However, studies dealing with leaf inputs to coniferous forest soils are limited although coniferous forests are widespread through the Northern temperate zone. In this study, we focused on the effects of soluble, insoluble and whole-tissue coniferous needle fractions on soil organic matter (SOM) decomposition and C storage in soil fractions. In addition, the effect of future increased C input was tested by applying a doubled amount of the soluble fraction (whole-tissue + soluble fraction). 13C-labelled needles were produced from spruce seedlings in growth chambers and needle fractions were added to the coniferous forest soil in laboratory microcosms. CO2 respired during incubation from the microcosms was partitioned into needle- and SOM-derived components. After seven months, soils were destructively harvested and analysed for C content in soil fractions and microbial community composition. The soluble, insoluble and whole-tissue fractions resulted in cumulative priming (increased SOM-derived CO2 relative to unamended controls) of 25 ± 8%, 40 ± 1%, and 39 ± 7%, respectively. The doubled soluble-C addition caused a slightly lower priming (38 ± 2%) than the whole-tissue fraction alone. The addition of needle fractions did not significantly affect the C content of soil fractions. However, the soluble fraction retained in soil was mainly found adsorbed onto mineral particles, whereas the insoluble and whole-tissue fractions occurred mainly as free particulate organic matter or adsorbed onto mineral particles. The insoluble and whole-tissue fraction led to increased fungal abundance and decreased abundance of G+ bacteria and actinobacteria. All the fractions were primarily incorporated into fungal biomass after seven months suggesting that fungi were the main consumers of all needle fractions after the labile C had been depleted. When considering all the C gains and losses, the addition of all needle fractions resulted in net soil C increase. This suggests that, although the input of the coniferous needles leads to some C losses through the priming of SOM decomposition, these C losses are compensated by new C storage either in SOM fractions or microbial biomass.

  • Název v anglickém jazyce

    Soil organic matter decomposition and carbon sequestration in temperate coniferous forest soils affected by soluble and insoluble spruce needle fractions

  • Popis výsledku anglicky

    Temperate forest soils are important carbon (C) sinks, where the C-stock is largely determined by the balance of leaf inputs and losses through respiration. However, studies dealing with leaf inputs to coniferous forest soils are limited although coniferous forests are widespread through the Northern temperate zone. In this study, we focused on the effects of soluble, insoluble and whole-tissue coniferous needle fractions on soil organic matter (SOM) decomposition and C storage in soil fractions. In addition, the effect of future increased C input was tested by applying a doubled amount of the soluble fraction (whole-tissue + soluble fraction). 13C-labelled needles were produced from spruce seedlings in growth chambers and needle fractions were added to the coniferous forest soil in laboratory microcosms. CO2 respired during incubation from the microcosms was partitioned into needle- and SOM-derived components. After seven months, soils were destructively harvested and analysed for C content in soil fractions and microbial community composition. The soluble, insoluble and whole-tissue fractions resulted in cumulative priming (increased SOM-derived CO2 relative to unamended controls) of 25 ± 8%, 40 ± 1%, and 39 ± 7%, respectively. The doubled soluble-C addition caused a slightly lower priming (38 ± 2%) than the whole-tissue fraction alone. The addition of needle fractions did not significantly affect the C content of soil fractions. However, the soluble fraction retained in soil was mainly found adsorbed onto mineral particles, whereas the insoluble and whole-tissue fractions occurred mainly as free particulate organic matter or adsorbed onto mineral particles. The insoluble and whole-tissue fraction led to increased fungal abundance and decreased abundance of G+ bacteria and actinobacteria. All the fractions were primarily incorporated into fungal biomass after seven months suggesting that fungi were the main consumers of all needle fractions after the labile C had been depleted. When considering all the C gains and losses, the addition of all needle fractions resulted in net soil C increase. This suggests that, although the input of the coniferous needles leads to some C losses through the priming of SOM decomposition, these C losses are compensated by new C storage either in SOM fractions or microbial biomass.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Soil Biology and Biochemistry

  • ISSN

    0038-0717

  • e-ISSN

  • Svazek periodika

    138

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    107595

  • Kód UT WoS článku

    000495519900014

  • EID výsledku v databázi Scopus

    2-s2.0-85071980791