Spatio-temporal dynamics of arbuscular mycorrhizal fungi and soil organic carbon in coastal saline soil of China
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F20%3A00540853" target="_blank" >RIV/60077344:_____/20:00540853 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-020-66976-w" target="_blank" >https://www.nature.com/articles/s41598-020-66976-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-020-66976-w" target="_blank" >10.1038/s41598-020-66976-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spatio-temporal dynamics of arbuscular mycorrhizal fungi and soil organic carbon in coastal saline soil of China
Popis výsledku v původním jazyce
A comprehensive understanding of the relationship between arbuscular mycorrhizal (AM) fungi and coastal saline soil organic carbon (SOC) is crucial for analysis of the function of coastal wetlands in soil carbon sequestration. In a field experiment, the temporal and spatial dynamics of AM fungi, glomalin-related soil protein (GRSP) which is described as a N-linked glycoprotein and the putative gene product of AM fungi, SOC, and soil aggregates were investigated in halophyte Kosteletzkya virginica rhizosphere soil of coastal saline areas of North Jiangsu, China. Soil samples were collected from a depth of up to 30cm in two plantation regions from August 2012 to May 2013. Results showed K. virginica formed a strong symbiotic relationship to AM fungi. AM colonization and spore density were the highest in the 10-20cm soil layer of Jinhai farm in August 2012, because of the presence of numerous fibrous roots in this soil layer. The total GRSP and SOC were the highest in the 0-10cm soil layer in May 2013 and November 2012, respectively. Correlation coefficient analysis revealed that AM colonization and spore density were positively correlated with total GRSP. Meanwhile, total GRSP was significantly positively correlated with large macroaggregates (>3mm), SOC, total P, Olsen P, and soil microbial biomass carbon (SMBC), but negatively correlated with microaggregates (<0.25mm), soil EC, total N, and pH. SOC was positively correlated with spore density, large macroaggregates, small macroaggregates (2-0.25mm), alkaline N, and SMBC and negatively correlated with microaggregates, EC, pH, and total K. Although it may be a statistical artifact, we found an interesting phenomenon that there was no significant correlation between soil aggregates and AM colonization or spore density. Hence, total GRSP is a vital source of saline soil C pool and an important biological indicator for evaluating coastal saline SOC pool and soil fertility, while AM colonization or spore density may not be.
Název v anglickém jazyce
Spatio-temporal dynamics of arbuscular mycorrhizal fungi and soil organic carbon in coastal saline soil of China
Popis výsledku anglicky
A comprehensive understanding of the relationship between arbuscular mycorrhizal (AM) fungi and coastal saline soil organic carbon (SOC) is crucial for analysis of the function of coastal wetlands in soil carbon sequestration. In a field experiment, the temporal and spatial dynamics of AM fungi, glomalin-related soil protein (GRSP) which is described as a N-linked glycoprotein and the putative gene product of AM fungi, SOC, and soil aggregates were investigated in halophyte Kosteletzkya virginica rhizosphere soil of coastal saline areas of North Jiangsu, China. Soil samples were collected from a depth of up to 30cm in two plantation regions from August 2012 to May 2013. Results showed K. virginica formed a strong symbiotic relationship to AM fungi. AM colonization and spore density were the highest in the 10-20cm soil layer of Jinhai farm in August 2012, because of the presence of numerous fibrous roots in this soil layer. The total GRSP and SOC were the highest in the 0-10cm soil layer in May 2013 and November 2012, respectively. Correlation coefficient analysis revealed that AM colonization and spore density were positively correlated with total GRSP. Meanwhile, total GRSP was significantly positively correlated with large macroaggregates (>3mm), SOC, total P, Olsen P, and soil microbial biomass carbon (SMBC), but negatively correlated with microaggregates (<0.25mm), soil EC, total N, and pH. SOC was positively correlated with spore density, large macroaggregates, small macroaggregates (2-0.25mm), alkaline N, and SMBC and negatively correlated with microaggregates, EC, pH, and total K. Although it may be a statistical artifact, we found an interesting phenomenon that there was no significant correlation between soil aggregates and AM colonization or spore density. Hence, total GRSP is a vital source of saline soil C pool and an important biological indicator for evaluating coastal saline SOC pool and soil fertility, while AM colonization or spore density may not be.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
9781
Kód UT WoS článku
000543956500021
EID výsledku v databázi Scopus
2-s2.0-85086570132