Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Impacts of predator-induced behavioural plasticity on the temperature dependence of predator–prey activity and population dynamics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F21%3A00535299" target="_blank" >RIV/60077344:_____/21:00535299 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68081766:_____/21:00535299 RIV/60076658:12310/21:43904223

  • Výsledek na webu

    <a href="https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13383" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13383</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/1365-2656.13383" target="_blank" >10.1111/1365-2656.13383</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Impacts of predator-induced behavioural plasticity on the temperature dependence of predator–prey activity and population dynamics

  • Popis výsledku v původním jazyce

    Predation is a key ecological interaction affecting populations and communities. Climate warming can modify this interaction both directly by the kinetic effects of temperature on biological rates and indirectly through integrated behavioural and physiological responses of the predators and prey. Temperature dependence of predation rates can further be altered by predator-induced plasticity of prey locomotor activity, but empirical data about this effect are lacking.n2. We propose a general framework to understand the influence of predator-induced developmental plasticity on behavioural thermal reaction norms in prey and their consequences for predator–prey dynamics. Using a mesocosm experiment with dragonfly larvae (predator) and newt larvae (prey), we tested if the predatorinduced plasticity alters the elevation or the slope of the thermal reaction norms for locomotor activity metrics in prey. We also estimated the joint predator–prey thermal response in mean locomotor speed, which determines prey encounter rate, and modelled the effect of both phenomena on predator–prey population dynamics.n3. Thermal reaction norms for locomotor activity in prey were affected by predation risk cues but with minor influence on the joint predator–prey behavioural response. We found that predation risk cues significantly decreased the intercept of thermal reaction norm for total activity rate (i.e. all body movements) but not the other locomotor activity metrics in the prey, and that prey locomotor activity rate and locomotor speed increased with prey density.n4. Temperature had opposite effects on the mean relative speed of predator and prey as individual speed increased with temperature in predators but decreased in prey. This led to a negligible effect of body temperature on predicted prey encounter rates and predator–prey dynamics. The behavioural component of predator–prey interaction varied much more between individuals than with temperature and the presence of predation risk cues in our system.n5. We conclude that within-population variation in locomotor activity can buffer the influence of body temperature and predation risk cues on predator–prey interactions, and further research should focus on the magnitude and sources of behavioural variation in interacting species to predict the impact of climate change on predator–prey interactions and food web dynamics.nn

  • Název v anglickém jazyce

    Impacts of predator-induced behavioural plasticity on the temperature dependence of predator–prey activity and population dynamics

  • Popis výsledku anglicky

    Predation is a key ecological interaction affecting populations and communities. Climate warming can modify this interaction both directly by the kinetic effects of temperature on biological rates and indirectly through integrated behavioural and physiological responses of the predators and prey. Temperature dependence of predation rates can further be altered by predator-induced plasticity of prey locomotor activity, but empirical data about this effect are lacking.n2. We propose a general framework to understand the influence of predator-induced developmental plasticity on behavioural thermal reaction norms in prey and their consequences for predator–prey dynamics. Using a mesocosm experiment with dragonfly larvae (predator) and newt larvae (prey), we tested if the predatorinduced plasticity alters the elevation or the slope of the thermal reaction norms for locomotor activity metrics in prey. We also estimated the joint predator–prey thermal response in mean locomotor speed, which determines prey encounter rate, and modelled the effect of both phenomena on predator–prey population dynamics.n3. Thermal reaction norms for locomotor activity in prey were affected by predation risk cues but with minor influence on the joint predator–prey behavioural response. We found that predation risk cues significantly decreased the intercept of thermal reaction norm for total activity rate (i.e. all body movements) but not the other locomotor activity metrics in the prey, and that prey locomotor activity rate and locomotor speed increased with prey density.n4. Temperature had opposite effects on the mean relative speed of predator and prey as individual speed increased with temperature in predators but decreased in prey. This led to a negligible effect of body temperature on predicted prey encounter rates and predator–prey dynamics. The behavioural component of predator–prey interaction varied much more between individuals than with temperature and the presence of predation risk cues in our system.n5. We conclude that within-population variation in locomotor activity can buffer the influence of body temperature and predation risk cues on predator–prey interactions, and further research should focus on the magnitude and sources of behavioural variation in interacting species to predict the impact of climate change on predator–prey interactions and food web dynamics.nn

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-15480S" target="_blank" >GA17-15480S: Studenokrevní sladkovodní živočichové a klimatická změna: vliv fenotypové plasticity na životní cykly a trofické interakce</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Animal Ecology

  • ISSN

    0021-8790

  • e-ISSN

  • Svazek periodika

    90

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    503-514

  • Kód UT WoS článku

    000590992000001

  • EID výsledku v databázi Scopus

    2-s2.0-85096655332