Cold acclimation preserves hindgut reabsorption capacity at low temperature in a chill-susceptible insect, Locusta migratoria
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F21%3A00535551" target="_blank" >RIV/60077344:_____/21:00535551 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1095643320302038?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1095643320302038?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cbpa.2020.110850" target="_blank" >10.1016/j.cbpa.2020.110850</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cold acclimation preserves hindgut reabsorption capacity at low temperature in a chill-susceptible insect, Locusta migratoria
Popis výsledku v původním jazyce
Cold acclimation increases cold tolerance of chill-susceptible insects and the acclimation response often involves improved organismal ion balance and osmoregulatory function at low temperature. However, the physiological mechanisms underlying plasticity of ion regulatory capacity are largely unresolved. Here we used Ussing chambers to explore the effects of cold exposure on hindgut KCl reabsorption in cold- (11 °C) and warm-acclimated (30 °C) Locusta migratoria. Cooling (from 30 to 10 °C) reduced active reabsorption across recta from warm-acclimated locusts, while recta from cold-acclimated locusts maintained reabsorption at 10 °C. The differences in transport capacity were not linked to major rearrangements of membrane phospholipid profiles. Yet, the stimulatory effect of two signal transduction pathways were altered by temperature and/or acclimation. cAMP-stimulation increased reabsorption in both acclimation groups, with a strong stimulatory effect at 30 °C and a moderate stimulatory effect at 10 °C. cGMP-stimulation also increased reabsorption in both acclimation groups at 30 °C, but their response to cGMP differed at 10 °C. Recta from warm-acclimated locusts, characterised by reduced reabsorption at 10 °C, recovered reabsorption capacity following cGMP-stimulation at 10 °C. In contrast, recta from cold-acclimated locusts, characterised by sustained reabsorption at 10 °C, were unaffected by cGMP-stimulation. Furthermore, cold-exposed recta from warm-acclimated locusts were insensitive to bafilomycin-α1, a V-type H+-ATPase inhibitor, whereas this blocker reduced reabsorption across cold-exposed recta from cold-acclimated animals. In conclusion, bafilomycin-sensitive and cGMP-dependent transport mechanism(s) are likely blocked during cold exposure in warm-acclimated animals while preserved in cold-acclimated animals. These may in part explain the large differences in rectal ion transport capacity between acclimation groups at low temperature.
Název v anglickém jazyce
Cold acclimation preserves hindgut reabsorption capacity at low temperature in a chill-susceptible insect, Locusta migratoria
Popis výsledku anglicky
Cold acclimation increases cold tolerance of chill-susceptible insects and the acclimation response often involves improved organismal ion balance and osmoregulatory function at low temperature. However, the physiological mechanisms underlying plasticity of ion regulatory capacity are largely unresolved. Here we used Ussing chambers to explore the effects of cold exposure on hindgut KCl reabsorption in cold- (11 °C) and warm-acclimated (30 °C) Locusta migratoria. Cooling (from 30 to 10 °C) reduced active reabsorption across recta from warm-acclimated locusts, while recta from cold-acclimated locusts maintained reabsorption at 10 °C. The differences in transport capacity were not linked to major rearrangements of membrane phospholipid profiles. Yet, the stimulatory effect of two signal transduction pathways were altered by temperature and/or acclimation. cAMP-stimulation increased reabsorption in both acclimation groups, with a strong stimulatory effect at 30 °C and a moderate stimulatory effect at 10 °C. cGMP-stimulation also increased reabsorption in both acclimation groups at 30 °C, but their response to cGMP differed at 10 °C. Recta from warm-acclimated locusts, characterised by reduced reabsorption at 10 °C, recovered reabsorption capacity following cGMP-stimulation at 10 °C. In contrast, recta from cold-acclimated locusts, characterised by sustained reabsorption at 10 °C, were unaffected by cGMP-stimulation. Furthermore, cold-exposed recta from warm-acclimated locusts were insensitive to bafilomycin-α1, a V-type H+-ATPase inhibitor, whereas this blocker reduced reabsorption across cold-exposed recta from cold-acclimated animals. In conclusion, bafilomycin-sensitive and cGMP-dependent transport mechanism(s) are likely blocked during cold exposure in warm-acclimated animals while preserved in cold-acclimated animals. These may in part explain the large differences in rectal ion transport capacity between acclimation groups at low temperature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology
ISSN
1095-6433
e-ISSN
1531-4332
Svazek periodika
252
Číslo periodika v rámci svazku
FEB 01
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
110850
Kód UT WoS článku
000603466800018
EID výsledku v databázi Scopus
2-s2.0-85096964316