Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F21%3A00546651" target="_blank" >RIV/60077344:_____/21:00546651 - isvavai.cz</a>
Výsledek na webu
<a href="https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13589" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13589</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/1365-2656.13589" target="_blank" >10.1111/1365-2656.13589</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments
Popis výsledku v původním jazyce
The thermal biology of ectotherms largely determines their abundance and distributions. In general, tropical species inhabiting warm and stable thermal environments tend to have low tolerance to cold and variable environments, which may restrict their expansion into temperate climates. However, the distribution of some tropical species does extend into cooler areas such as tropical borders and high elevation tropical mountains. Behavioural and morphological differences may therefore play important roles in facilitating tropical species to cope with cold and variable climates at tropical edges. We used field-validated biophysical models to estimate body temperatures of butterflies across elevational gradients at three sites in southern China and assessed the contribution of behavioural and morphological differences in facilitating their persistence in tropical and temperate climates. We investigated the effects of temperature on the activity of 4,844 individuals of 144 butterfly species along thermal gradients and tested whether species of different climatic affinities-tropical and widespread (distributed in both temperate and tropical regions)-differed in their thermoregulatory strategies (i.e. basking). In addition, we tested whether thermally related morphology or the strength of solar radiation (when butterflies were recorded) was related to such differences. We found that activities of tropical species were restricted (low abundance) at low air temperatures compared to widespread species. Active tropical species were also more likely to bask at cooler body temperatures than widespread species. Heat gain from behavioural thermoregulation was higher for tropical species (when accounting for species abundance), and heat gain correlated with larger thorax widths but not with measured solar radiation. Our results indicate that physiological intolerance to cold temperatures in tropical species may be compensated through behavioural and morphological responses in thermoregulation in variable subtropical environments. Increasing climatic variability with climate change may render tropical species more vulnerable to cold weather extremes compared to widespread species that are more physiologically suited to variable environments.
Název v anglickém jazyce
Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments
Popis výsledku anglicky
The thermal biology of ectotherms largely determines their abundance and distributions. In general, tropical species inhabiting warm and stable thermal environments tend to have low tolerance to cold and variable environments, which may restrict their expansion into temperate climates. However, the distribution of some tropical species does extend into cooler areas such as tropical borders and high elevation tropical mountains. Behavioural and morphological differences may therefore play important roles in facilitating tropical species to cope with cold and variable climates at tropical edges. We used field-validated biophysical models to estimate body temperatures of butterflies across elevational gradients at three sites in southern China and assessed the contribution of behavioural and morphological differences in facilitating their persistence in tropical and temperate climates. We investigated the effects of temperature on the activity of 4,844 individuals of 144 butterfly species along thermal gradients and tested whether species of different climatic affinities-tropical and widespread (distributed in both temperate and tropical regions)-differed in their thermoregulatory strategies (i.e. basking). In addition, we tested whether thermally related morphology or the strength of solar radiation (when butterflies were recorded) was related to such differences. We found that activities of tropical species were restricted (low abundance) at low air temperatures compared to widespread species. Active tropical species were also more likely to bask at cooler body temperatures than widespread species. Heat gain from behavioural thermoregulation was higher for tropical species (when accounting for species abundance), and heat gain correlated with larger thorax widths but not with measured solar radiation. Our results indicate that physiological intolerance to cold temperatures in tropical species may be compensated through behavioural and morphological responses in thermoregulation in variable subtropical environments. Increasing climatic variability with climate change may render tropical species more vulnerable to cold weather extremes compared to widespread species that are more physiologically suited to variable environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10616 - Entomology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Animal Ecology
ISSN
0021-8790
e-ISSN
1365-2656
Svazek periodika
90
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
2888-2900
Kód UT WoS článku
000702893200001
EID výsledku v databázi Scopus
2-s2.0-85116110168