Deviations in the Z:A ratio disrupt sexual development in the eri silkmoth, Samia cynthia ricini
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00571014" target="_blank" >RIV/60077344:_____/23:00571014 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/genetics/article-pdf/224/1/iyad023/50190185/iyad023.pdf" target="_blank" >https://academic.oup.com/genetics/article-pdf/224/1/iyad023/50190185/iyad023.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/genetics/iyad023" target="_blank" >10.1093/genetics/iyad023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deviations in the Z:A ratio disrupt sexual development in the eri silkmoth, Samia cynthia ricini
Popis výsledku v původním jazyce
Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety, and 2 models, W-dominance and Z-counting, have been proposed to determine sex. The W-dominant mechanism is well known in Bombyx mori. However, little is known about the Z-counting mechanism in Z0/ZZ species. We investigated whether ploidy changes affect sexual development and gene expression in the eri silkmoth, Samia cynthia ricini (2n = 27♀/28♂, Z0♀/ZZ♂). Tetraploid males (4n = 56, ZZZZ) and females (4n = 54, ZZ) were induced by heat and cold shock, and then, triploid embryos were produced by crosses between diploids and tetraploids. Two karyotypes (3n = 42, ZZZ and 3n = 41, ZZ) were identified in triploid embryos. Triploid embryos with 3 Z chromosomes showed male-specific splicing of the S. cynthia doublesex (Scdsx) gene, whereas 2-Z triploid embryos showed both male- and female-specific splicing. From larva to adult, 3-Z triploids showed a normal male phenotype, except for defects in spermatogenesis. However, abnormal gonads were observed in 2-Z triploids, which showed both male- and female-specific Scdsx transcripts not only in the gonads but also in somatic tissues. Two-Z triploids were thus obviously intersexes, suggesting that sexual development in S. c. ricini depends on the Z:A ratio and not only on the Z number. Moreover, mRNA-seq analyses in embryos showed that relative levels of gene expression are similar between samples with different doses of Z chromosomes and autosome sets. Our results provide the first evidence that ploidy changes disrupt sexual development but have no effect on the general mode of dosage compensation in Lepidoptera.
Název v anglickém jazyce
Deviations in the Z:A ratio disrupt sexual development in the eri silkmoth, Samia cynthia ricini
Popis výsledku anglicky
Moths and butterflies (Lepidoptera) have sex chromosome systems with female heterogamety, and 2 models, W-dominance and Z-counting, have been proposed to determine sex. The W-dominant mechanism is well known in Bombyx mori. However, little is known about the Z-counting mechanism in Z0/ZZ species. We investigated whether ploidy changes affect sexual development and gene expression in the eri silkmoth, Samia cynthia ricini (2n = 27♀/28♂, Z0♀/ZZ♂). Tetraploid males (4n = 56, ZZZZ) and females (4n = 54, ZZ) were induced by heat and cold shock, and then, triploid embryos were produced by crosses between diploids and tetraploids. Two karyotypes (3n = 42, ZZZ and 3n = 41, ZZ) were identified in triploid embryos. Triploid embryos with 3 Z chromosomes showed male-specific splicing of the S. cynthia doublesex (Scdsx) gene, whereas 2-Z triploid embryos showed both male- and female-specific splicing. From larva to adult, 3-Z triploids showed a normal male phenotype, except for defects in spermatogenesis. However, abnormal gonads were observed in 2-Z triploids, which showed both male- and female-specific Scdsx transcripts not only in the gonads but also in somatic tissues. Two-Z triploids were thus obviously intersexes, suggesting that sexual development in S. c. ricini depends on the Z:A ratio and not only on the Z number. Moreover, mRNA-seq analyses in embryos showed that relative levels of gene expression are similar between samples with different doses of Z chromosomes and autosome sets. Our results provide the first evidence that ploidy changes disrupt sexual development but have no effect on the general mode of dosage compensation in Lepidoptera.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10603 - Genetics and heredity (medical genetics to be 3)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-13784S" target="_blank" >GA20-13784S: Chromosomální a molekulární mechanismy determinace pohlaví motýlů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Genetics
ISSN
0016-6731
e-ISSN
1943-2631
Svazek periodika
224
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
iyad023
Kód UT WoS článku
000973578500001
EID výsledku v databázi Scopus
2-s2.0-85159553004