Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Differences in trait–environment relationships: Implications for community weighted means tests

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00574017" target="_blank" >RIV/60077344:_____/23:00574017 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60076658:12310/23:43906670

  • Výsledek na webu

    <a href="https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14172" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.14172</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/1365-2745.14172" target="_blank" >10.1111/1365-2745.14172</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Differences in trait–environment relationships: Implications for community weighted means tests

  • Popis výsledku v původním jazyce

    1. One of J.P. Grime's greatest achievements was demonstrating the importance of the relationship between the environment and plant functional traits for understanding community assembly processes and the effects of biodiversity on ecosystem functioning. A popular approach assessing trait–environment relationships is the community weighted means (CWMs) method, which evaluates changes in communities' average trait values along gradients, with Grime being among its first practitioners.n2. Today the CWM method is well-established but some scholars have criticized it for inflated Type I errors. That is, in some scenarios of compositional turnover along a gradient, CWM tests can provide significant results even for randomly generated traits. Null models have been proposed to correct for such effects by randomizing trait values across species (CWM-sp). We review different approaches relating traits to the environment within the framework of the accepted dichotomy between species-level (observations are species) versus community-level (observations are community parameters) analyses. Between these families of analyses and their combinations, a great variety of methods exist that test different trait–environment relationships, each with different null hypotheses and ecological questions.n3. In classic CWM tests, the null hypothesis focuses on characteristics of trait distributions at the community level along gradients. The Type I error rate should not be a priori considered inflated when this test is used to identify changes in community trait structure affecting the functioning of communities. Trait changes observed with CWM tests may be accurate, but the interpretation that a specific trait drives turnover may be fallacious. Approaches like CWM-sp may be more appropriate for testing other ecological hypotheses, such as whether trait–environment relationships are widespread across species. In effect, this moves the ecological focus towards species-level analyses, that is on the adaptive value of traits and their relation to species niches.n4. Synthesis. There is no single trait–environment relationship. Species-level and community-level analyses, including variants within them, test different relationships with different null hypotheses, such that the potential for inflated error rates can be misleading. Using a spectrum of methods provides a comprehensive picture of the diversity of trait–environment relationships.

  • Název v anglickém jazyce

    Differences in trait–environment relationships: Implications for community weighted means tests

  • Popis výsledku anglicky

    1. One of J.P. Grime's greatest achievements was demonstrating the importance of the relationship between the environment and plant functional traits for understanding community assembly processes and the effects of biodiversity on ecosystem functioning. A popular approach assessing trait–environment relationships is the community weighted means (CWMs) method, which evaluates changes in communities' average trait values along gradients, with Grime being among its first practitioners.n2. Today the CWM method is well-established but some scholars have criticized it for inflated Type I errors. That is, in some scenarios of compositional turnover along a gradient, CWM tests can provide significant results even for randomly generated traits. Null models have been proposed to correct for such effects by randomizing trait values across species (CWM-sp). We review different approaches relating traits to the environment within the framework of the accepted dichotomy between species-level (observations are species) versus community-level (observations are community parameters) analyses. Between these families of analyses and their combinations, a great variety of methods exist that test different trait–environment relationships, each with different null hypotheses and ecological questions.n3. In classic CWM tests, the null hypothesis focuses on characteristics of trait distributions at the community level along gradients. The Type I error rate should not be a priori considered inflated when this test is used to identify changes in community trait structure affecting the functioning of communities. Trait changes observed with CWM tests may be accurate, but the interpretation that a specific trait drives turnover may be fallacious. Approaches like CWM-sp may be more appropriate for testing other ecological hypotheses, such as whether trait–environment relationships are widespread across species. In effect, this moves the ecological focus towards species-level analyses, that is on the adaptive value of traits and their relation to species niches.n4. Synthesis. There is no single trait–environment relationship. Species-level and community-level analyses, including variants within them, test different relationships with different null hypotheses, such that the potential for inflated error rates can be misleading. Using a spectrum of methods provides a comprehensive picture of the diversity of trait–environment relationships.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-13637S" target="_blank" >GA20-13637S: Diverzifikace na několika úrovních: zkoumání vlivu inter- a intra-specifické diferenciace rostlin na koexistenci a fungování</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Ecology

  • ISSN

    0022-0477

  • e-ISSN

    1365-2745

  • Svazek periodika

    111

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    2328-2341

  • Kód UT WoS článku

    001037922500001

  • EID výsledku v databázi Scopus

    2-s2.0-85166229522