Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Complex Plastids and the Evolution of the Marine Phytoplankton

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00580263" target="_blank" >RIV/60077344:_____/23:00580263 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60076658:12310/23:43907424

  • Výsledek na webu

    <a href="https://www.mdpi.com/2077-1312/11/10/1903" target="_blank" >https://www.mdpi.com/2077-1312/11/10/1903</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/jmse11101903" target="_blank" >10.3390/jmse11101903</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Complex Plastids and the Evolution of the Marine Phytoplankton

  • Popis výsledku v původním jazyce

    Photosynthesis allows for the formation of biomass from inorganic carbon and therefore greatly enhances the amount of organic material on planet Earth. Especially, oxygenic photosynthesis removed a major bottleneck in the formation of biomass by utilising ubiquitous water (H2O) and CO2 molecules as raw materials for organic molecules. This, over billions of years, shaped the world into the form we know today, with an oxygen-containing atmosphere, largely oxygenated water bodies and landmasses consisting of sediment rocks. Oxygenic photosynthesis furthermore enabled the evolution of aerobic energy metabolism, and it would be very difficult to imagine animal (including human) life in the absence of molecular oxygen as an electron acceptor. Oxygenic photosynthesis first, and exclusively, evolved in cyanobacteria. However, eukaryotes also learned to photosynthesise, albeit with a trick, which is the integration of formerly free-living cyanobacteria into the eukaryotic cell. There, the former bacteria became endosymbionts, and from these endosymbionts, the photosynthetic organelles (termed plastids) evolved. In almost all major groups of eukaryotes, plastid-containing members are found. At the same time, plastid-related features also indicate that these plastids form a monophyletic group. This can be explained by the transfer of plastids between the eukaryotic super-groups, leading to plastids being found in groups that are otherwise non-photosynthetic. In this chapter, we discuss the evolutionary origin of plastids, with a special emphasis on the evolution of plankton algae, such as diatoms or dinoflagellates, who acquired their plastids from other photosynthetic eukaryotes.

  • Název v anglickém jazyce

    Complex Plastids and the Evolution of the Marine Phytoplankton

  • Popis výsledku anglicky

    Photosynthesis allows for the formation of biomass from inorganic carbon and therefore greatly enhances the amount of organic material on planet Earth. Especially, oxygenic photosynthesis removed a major bottleneck in the formation of biomass by utilising ubiquitous water (H2O) and CO2 molecules as raw materials for organic molecules. This, over billions of years, shaped the world into the form we know today, with an oxygen-containing atmosphere, largely oxygenated water bodies and landmasses consisting of sediment rocks. Oxygenic photosynthesis furthermore enabled the evolution of aerobic energy metabolism, and it would be very difficult to imagine animal (including human) life in the absence of molecular oxygen as an electron acceptor. Oxygenic photosynthesis first, and exclusively, evolved in cyanobacteria. However, eukaryotes also learned to photosynthesise, albeit with a trick, which is the integration of formerly free-living cyanobacteria into the eukaryotic cell. There, the former bacteria became endosymbionts, and from these endosymbionts, the photosynthetic organelles (termed plastids) evolved. In almost all major groups of eukaryotes, plastid-containing members are found. At the same time, plastid-related features also indicate that these plastids form a monophyletic group. This can be explained by the transfer of plastids between the eukaryotic super-groups, leading to plastids being found in groups that are otherwise non-photosynthetic. In this chapter, we discuss the evolutionary origin of plastids, with a special emphasis on the evolution of plankton algae, such as diatoms or dinoflagellates, who acquired their plastids from other photosynthetic eukaryotes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Marine Science and Engineering

  • ISSN

    2077-1312

  • e-ISSN

    2077-1312

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    21

  • Strana od-do

    1903

  • Kód UT WoS článku

    001092461700001

  • EID výsledku v databázi Scopus

    2-s2.0-85175339883