Copper and zinc accumulation, distribution, and tolerance in Pistia stratiotes L., revealing the role of root caps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00583891" target="_blank" >RIV/60077344:_____/23:00583891 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/23:43907199
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0166445X23003338?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166445X23003338?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aquatox.2023.106731" target="_blank" >10.1016/j.aquatox.2023.106731</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Copper and zinc accumulation, distribution, and tolerance in Pistia stratiotes L., revealing the role of root caps
Popis výsledku v původním jazyce
Pollution by potentially toxic trace metals, such as copper or zinc, is global. Both Cu and Zn are essential microelements, which in higher concentrations become toxic. The aquatic plant Pistia stratiotes(L. has great potential for phytoremediation. Also, it has an unusually large and easily detachable root cap, which makes it a suitable model for studying the potential role of the root cap in metal uptake. Plant response to environmentally relevant concentrations of Cu (0.1, 0.3, and 1 mu M) and Zn (0.3, 1, and 3 mu M) was investigated with the aim of studying their interaction and distribution at the root tissue level as well as revealing their tolerance mechanisms. Changes in the root anatomy and plant ionome were determined using light and fluorescence microscopy, ICP-MS, and mu XRF imaging. Alterations in photosynthetic activity caused by Cu or Zn excesses were monitored by direct imaging of fast chlorophyll fluorescence kinetics (OJIP). Fe and Mn were preferentially localized in the root cap, while Ca, Cu, Ni, and Zn were mainly in the root tip regardless of the Cu/Zn treatment. Translocation of Cu and Zn to the leaves increased with higher doses, however the translocation factor was the lowest in the highest treatments. Measurements of photosynthetic parameters showed a higher susceptibility of electron transport flux from QA to QB under increasing Cu than Zn supply. This, along with our findings regarding the root anatomy and the differences in Ca accumulation and distribution, led to the conclusion that P. stratiotes is more effective for Zn remediation than Cu.
Název v anglickém jazyce
Copper and zinc accumulation, distribution, and tolerance in Pistia stratiotes L., revealing the role of root caps
Popis výsledku anglicky
Pollution by potentially toxic trace metals, such as copper or zinc, is global. Both Cu and Zn are essential microelements, which in higher concentrations become toxic. The aquatic plant Pistia stratiotes(L. has great potential for phytoremediation. Also, it has an unusually large and easily detachable root cap, which makes it a suitable model for studying the potential role of the root cap in metal uptake. Plant response to environmentally relevant concentrations of Cu (0.1, 0.3, and 1 mu M) and Zn (0.3, 1, and 3 mu M) was investigated with the aim of studying their interaction and distribution at the root tissue level as well as revealing their tolerance mechanisms. Changes in the root anatomy and plant ionome were determined using light and fluorescence microscopy, ICP-MS, and mu XRF imaging. Alterations in photosynthetic activity caused by Cu or Zn excesses were monitored by direct imaging of fast chlorophyll fluorescence kinetics (OJIP). Fe and Mn were preferentially localized in the root cap, while Ca, Cu, Ni, and Zn were mainly in the root tip regardless of the Cu/Zn treatment. Translocation of Cu and Zn to the leaves increased with higher doses, however the translocation factor was the lowest in the highest treatments. Measurements of photosynthetic parameters showed a higher susceptibility of electron transport flux from QA to QB under increasing Cu than Zn supply. This, along with our findings regarding the root anatomy and the differences in Ca accumulation and distribution, led to the conclusion that P. stratiotes is more effective for Zn remediation than Cu.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000336" target="_blank" >EF15_003/0000336: Kovy, rostliny a lidé</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aquatic Toxicology
ISSN
0166-445X
e-ISSN
1879-1514
Svazek periodika
264
Číslo periodika v rámci svazku
NOV 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
106731
Kód UT WoS článku
001098605000001
EID výsledku v databázi Scopus
2-s2.0-85174674478