Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Integrating rapid assessment, variable probability sampling, and machine learning to improve accuracy and consistency in mapping local spatial distribution of plant species richness

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00575078" target="_blank" >RIV/60077344:_____/24:00575078 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60076658:12310/24:43908619

  • Výsledek na webu

    <a href="https://academic.oup.com/forestry/article-pdf/97/2/282/56918180/cpad041.pdf" target="_blank" >https://academic.oup.com/forestry/article-pdf/97/2/282/56918180/cpad041.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/forestry/cpad041" target="_blank" >10.1093/forestry/cpad041</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Integrating rapid assessment, variable probability sampling, and machine learning to improve accuracy and consistency in mapping local spatial distribution of plant species richness

  • Popis výsledku v původním jazyce

    Conserving plant diversity is integral to sustainable forest management. This study aims at diversifying tools to map spatial distribution of species richness. We develop a sampling strategy of using rapid assessments by local communities to gather prior information on species richness distribution to drive census cell selection by sampling with covariate designs. An artificial neural network model is built to predict the spatial patterns. Accuracy and consistency of rapid assessment factors, sample selection methods, and sampling intensity of census cells were tested in a simulation study with seven 25-50-ha census plots in the tropics and subtropics. Results showed that identifying more plant individuals in a rapid assessment improved accuracy and consistency, while transect was comparable to or slightly better than nearest-neighbor assessment, but knowing more species had little effects. Results of sampling with covariate designs depended on covariates. The covariate I-freq, inverse of the frequency of the rapidly assessed species richness strata, was the best choice. List sampling and local pivotal method with I-freq increased accuracy by 0.7%-1.6% and consistency by 7.6%-12.0% for 5% to 20% sampling intensity. This study recommends a rapid assessment method of selecting 20 individuals at every 20-m interval along a transect. Knowing at least half of the species in a forest that are abundant is sufficient. Local pivotal method is recommended at 5% sampling intensity or less. This study presents a methodology to directly involve local communities in probability-based forest resource assessment to support decision-making in forest management.

  • Název v anglickém jazyce

    Integrating rapid assessment, variable probability sampling, and machine learning to improve accuracy and consistency in mapping local spatial distribution of plant species richness

  • Popis výsledku anglicky

    Conserving plant diversity is integral to sustainable forest management. This study aims at diversifying tools to map spatial distribution of species richness. We develop a sampling strategy of using rapid assessments by local communities to gather prior information on species richness distribution to drive census cell selection by sampling with covariate designs. An artificial neural network model is built to predict the spatial patterns. Accuracy and consistency of rapid assessment factors, sample selection methods, and sampling intensity of census cells were tested in a simulation study with seven 25-50-ha census plots in the tropics and subtropics. Results showed that identifying more plant individuals in a rapid assessment improved accuracy and consistency, while transect was comparable to or slightly better than nearest-neighbor assessment, but knowing more species had little effects. Results of sampling with covariate designs depended on covariates. The covariate I-freq, inverse of the frequency of the rapidly assessed species richness strata, was the best choice. List sampling and local pivotal method with I-freq increased accuracy by 0.7%-1.6% and consistency by 7.6%-12.0% for 5% to 20% sampling intensity. This study recommends a rapid assessment method of selecting 20 individuals at every 20-m interval along a transect. Knowing at least half of the species in a forest that are abundant is sufficient. Local pivotal method is recommended at 5% sampling intensity or less. This study presents a methodology to directly involve local communities in probability-based forest resource assessment to support decision-making in forest management.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10619 - Biodiversity conservation

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Forestry

  • ISSN

    0015-752X

  • e-ISSN

    1464-3626

  • Svazek periodika

    97

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    282-294

  • Kód UT WoS článku

    001047889300001

  • EID výsledku v databázi Scopus

    2-s2.0-85187508463