Integrating rapid assessment, variable probability sampling, and machine learning to improve accuracy and consistency in mapping local spatial distribution of plant species richness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00575078" target="_blank" >RIV/60077344:_____/24:00575078 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/24:43908619
Výsledek na webu
<a href="https://academic.oup.com/forestry/article-pdf/97/2/282/56918180/cpad041.pdf" target="_blank" >https://academic.oup.com/forestry/article-pdf/97/2/282/56918180/cpad041.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/forestry/cpad041" target="_blank" >10.1093/forestry/cpad041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrating rapid assessment, variable probability sampling, and machine learning to improve accuracy and consistency in mapping local spatial distribution of plant species richness
Popis výsledku v původním jazyce
Conserving plant diversity is integral to sustainable forest management. This study aims at diversifying tools to map spatial distribution of species richness. We develop a sampling strategy of using rapid assessments by local communities to gather prior information on species richness distribution to drive census cell selection by sampling with covariate designs. An artificial neural network model is built to predict the spatial patterns. Accuracy and consistency of rapid assessment factors, sample selection methods, and sampling intensity of census cells were tested in a simulation study with seven 25-50-ha census plots in the tropics and subtropics. Results showed that identifying more plant individuals in a rapid assessment improved accuracy and consistency, while transect was comparable to or slightly better than nearest-neighbor assessment, but knowing more species had little effects. Results of sampling with covariate designs depended on covariates. The covariate I-freq, inverse of the frequency of the rapidly assessed species richness strata, was the best choice. List sampling and local pivotal method with I-freq increased accuracy by 0.7%-1.6% and consistency by 7.6%-12.0% for 5% to 20% sampling intensity. This study recommends a rapid assessment method of selecting 20 individuals at every 20-m interval along a transect. Knowing at least half of the species in a forest that are abundant is sufficient. Local pivotal method is recommended at 5% sampling intensity or less. This study presents a methodology to directly involve local communities in probability-based forest resource assessment to support decision-making in forest management.
Název v anglickém jazyce
Integrating rapid assessment, variable probability sampling, and machine learning to improve accuracy and consistency in mapping local spatial distribution of plant species richness
Popis výsledku anglicky
Conserving plant diversity is integral to sustainable forest management. This study aims at diversifying tools to map spatial distribution of species richness. We develop a sampling strategy of using rapid assessments by local communities to gather prior information on species richness distribution to drive census cell selection by sampling with covariate designs. An artificial neural network model is built to predict the spatial patterns. Accuracy and consistency of rapid assessment factors, sample selection methods, and sampling intensity of census cells were tested in a simulation study with seven 25-50-ha census plots in the tropics and subtropics. Results showed that identifying more plant individuals in a rapid assessment improved accuracy and consistency, while transect was comparable to or slightly better than nearest-neighbor assessment, but knowing more species had little effects. Results of sampling with covariate designs depended on covariates. The covariate I-freq, inverse of the frequency of the rapidly assessed species richness strata, was the best choice. List sampling and local pivotal method with I-freq increased accuracy by 0.7%-1.6% and consistency by 7.6%-12.0% for 5% to 20% sampling intensity. This study recommends a rapid assessment method of selecting 20 individuals at every 20-m interval along a transect. Knowing at least half of the species in a forest that are abundant is sufficient. Local pivotal method is recommended at 5% sampling intensity or less. This study presents a methodology to directly involve local communities in probability-based forest resource assessment to support decision-making in forest management.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10619 - Biodiversity conservation
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forestry
ISSN
0015-752X
e-ISSN
1464-3626
Svazek periodika
97
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
282-294
Kód UT WoS článku
001047889300001
EID výsledku v databázi Scopus
2-s2.0-85187508463