Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ - ω reaction-diffusion-convection fractal systems with variable coefficients
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00616555" target="_blank" >RIV/60077344:_____/24:00616555 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.chaos.2024.115737" target="_blank" >https://doi.org/10.1016/j.chaos.2024.115737</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2024.115737" target="_blank" >10.1016/j.chaos.2024.115737</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ - ω reaction-diffusion-convection fractal systems with variable coefficients
Popis výsledku v původním jazyce
Nonlinear partial differential equations admitting traveling wave solutions play an important role in the description and analysis of real-life physical processes and nonlinear phenomena. In this study, we prove that the excitable lambda omega reaction-diffusion-convection system introduced by Kopell and Howard can exhibit, in fractal dimensions, a large variety of spatial patterns. We have considered two independent models: a local reactiondiffusion-convection model characterized by variable coefficients that are subject to particular power laws and a nonlocal reaction-diffusion model characterized by symmetric kernels and a variable diffusion coefficient. Each model is characterized by a number of motivating properties and features. In the 1st model, the amplitude is governed by a 2nd-order differential equation, whereas in the 2nd-model, the amplitude is governed by a 4thorder differential equation, which is, under some conditions, comparable to the Swift-Hohenberg equation with variable coefficients that arise in the study of pattern formation, which belongs to the family of extended Fisher-Kolmogorov stationary equations used to study pattern-forming systems in biological and chemical systems. We report the emergence of superstructures that are suppressed for fractal dimensions much less than unity. These superstructures include superspiral waves characterized by a circular symmetry detected in various oscillatory media and the emergence of reflection of waves that take place in non-uniform reaction-diffusion systems, besides the emergence of micro-spiral waves that emerge at the cellular level. A transition from spiral waves to perfectly rotating waves is observed, besides a transition from Mexican hat shaped solutions to upsidedown Mexican hat shaped solutions. The domain size has a very strong impact on the rotational frequency of spiral and circular waves. These new phenomena associated with configuration patterns through a reactiondiffusion-convection system with different scales and characterized by variable coefficients can be applied for modeling a wide class of reaction-diffusion-convection problems. Supplementary properties have been obtained and discussed accordingly.
Název v anglickém jazyce
Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ - ω reaction-diffusion-convection fractal systems with variable coefficients
Popis výsledku anglicky
Nonlinear partial differential equations admitting traveling wave solutions play an important role in the description and analysis of real-life physical processes and nonlinear phenomena. In this study, we prove that the excitable lambda omega reaction-diffusion-convection system introduced by Kopell and Howard can exhibit, in fractal dimensions, a large variety of spatial patterns. We have considered two independent models: a local reactiondiffusion-convection model characterized by variable coefficients that are subject to particular power laws and a nonlocal reaction-diffusion model characterized by symmetric kernels and a variable diffusion coefficient. Each model is characterized by a number of motivating properties and features. In the 1st model, the amplitude is governed by a 2nd-order differential equation, whereas in the 2nd-model, the amplitude is governed by a 4thorder differential equation, which is, under some conditions, comparable to the Swift-Hohenberg equation with variable coefficients that arise in the study of pattern formation, which belongs to the family of extended Fisher-Kolmogorov stationary equations used to study pattern-forming systems in biological and chemical systems. We report the emergence of superstructures that are suppressed for fractal dimensions much less than unity. These superstructures include superspiral waves characterized by a circular symmetry detected in various oscillatory media and the emergence of reflection of waves that take place in non-uniform reaction-diffusion systems, besides the emergence of micro-spiral waves that emerge at the cellular level. A transition from spiral waves to perfectly rotating waves is observed, besides a transition from Mexican hat shaped solutions to upsidedown Mexican hat shaped solutions. The domain size has a very strong impact on the rotational frequency of spiral and circular waves. These new phenomena associated with configuration patterns through a reactiondiffusion-convection system with different scales and characterized by variable coefficients can be applied for modeling a wide class of reaction-diffusion-convection problems. Supplementary properties have been obtained and discussed accordingly.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/QK22020134" target="_blank" >QK22020134: Inovativní rybářský management velké nádrže</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos Solitons & Fractals
ISSN
0960-0779
e-ISSN
1873-2887
Svazek periodika
189
Číslo periodika v rámci svazku
Dec
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
28
Strana od-do
115737
Kód UT WoS článku
001359589500001
EID výsledku v databázi Scopus
2-s2.0-85209135614