Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ - ω reaction-diffusion-convection fractal systems with variable coefficients

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00616555" target="_blank" >RIV/60077344:_____/24:00616555 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.chaos.2024.115737" target="_blank" >https://doi.org/10.1016/j.chaos.2024.115737</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chaos.2024.115737" target="_blank" >10.1016/j.chaos.2024.115737</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ - ω reaction-diffusion-convection fractal systems with variable coefficients

  • Popis výsledku v původním jazyce

    Nonlinear partial differential equations admitting traveling wave solutions play an important role in the description and analysis of real-life physical processes and nonlinear phenomena. In this study, we prove that the excitable lambda omega reaction-diffusion-convection system introduced by Kopell and Howard can exhibit, in fractal dimensions, a large variety of spatial patterns. We have considered two independent models: a local reactiondiffusion-convection model characterized by variable coefficients that are subject to particular power laws and a nonlocal reaction-diffusion model characterized by symmetric kernels and a variable diffusion coefficient. Each model is characterized by a number of motivating properties and features. In the 1st model, the amplitude is governed by a 2nd-order differential equation, whereas in the 2nd-model, the amplitude is governed by a 4thorder differential equation, which is, under some conditions, comparable to the Swift-Hohenberg equation with variable coefficients that arise in the study of pattern formation, which belongs to the family of extended Fisher-Kolmogorov stationary equations used to study pattern-forming systems in biological and chemical systems. We report the emergence of superstructures that are suppressed for fractal dimensions much less than unity. These superstructures include superspiral waves characterized by a circular symmetry detected in various oscillatory media and the emergence of reflection of waves that take place in non-uniform reaction-diffusion systems, besides the emergence of micro-spiral waves that emerge at the cellular level. A transition from spiral waves to perfectly rotating waves is observed, besides a transition from Mexican hat shaped solutions to upsidedown Mexican hat shaped solutions. The domain size has a very strong impact on the rotational frequency of spiral and circular waves. These new phenomena associated with configuration patterns through a reactiondiffusion-convection system with different scales and characterized by variable coefficients can be applied for modeling a wide class of reaction-diffusion-convection problems. Supplementary properties have been obtained and discussed accordingly.

  • Název v anglickém jazyce

    Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ - ω reaction-diffusion-convection fractal systems with variable coefficients

  • Popis výsledku anglicky

    Nonlinear partial differential equations admitting traveling wave solutions play an important role in the description and analysis of real-life physical processes and nonlinear phenomena. In this study, we prove that the excitable lambda omega reaction-diffusion-convection system introduced by Kopell and Howard can exhibit, in fractal dimensions, a large variety of spatial patterns. We have considered two independent models: a local reactiondiffusion-convection model characterized by variable coefficients that are subject to particular power laws and a nonlocal reaction-diffusion model characterized by symmetric kernels and a variable diffusion coefficient. Each model is characterized by a number of motivating properties and features. In the 1st model, the amplitude is governed by a 2nd-order differential equation, whereas in the 2nd-model, the amplitude is governed by a 4thorder differential equation, which is, under some conditions, comparable to the Swift-Hohenberg equation with variable coefficients that arise in the study of pattern formation, which belongs to the family of extended Fisher-Kolmogorov stationary equations used to study pattern-forming systems in biological and chemical systems. We report the emergence of superstructures that are suppressed for fractal dimensions much less than unity. These superstructures include superspiral waves characterized by a circular symmetry detected in various oscillatory media and the emergence of reflection of waves that take place in non-uniform reaction-diffusion systems, besides the emergence of micro-spiral waves that emerge at the cellular level. A transition from spiral waves to perfectly rotating waves is observed, besides a transition from Mexican hat shaped solutions to upsidedown Mexican hat shaped solutions. The domain size has a very strong impact on the rotational frequency of spiral and circular waves. These new phenomena associated with configuration patterns through a reactiondiffusion-convection system with different scales and characterized by variable coefficients can be applied for modeling a wide class of reaction-diffusion-convection problems. Supplementary properties have been obtained and discussed accordingly.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/QK22020134" target="_blank" >QK22020134: Inovativní rybářský management velké nádrže</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos Solitons & Fractals

  • ISSN

    0960-0779

  • e-ISSN

    1873-2887

  • Svazek periodika

    189

  • Číslo periodika v rámci svazku

    Dec

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    28

  • Strana od-do

    115737

  • Kód UT WoS článku

    001359589500001

  • EID výsledku v databázi Scopus

    2-s2.0-85209135614