Schwarzschild spacetime in fractal dimensions: Deflection of light, supermassive black holes and temperature effects.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00618140" target="_blank" >RIV/60077344:_____/24:00618140 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1142/S0217732324501244" target="_blank" >https://doi.org/10.1142/S0217732324501244</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0217732324501244" target="_blank" >10.1142/S0217732324501244</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Schwarzschild spacetime in fractal dimensions: Deflection of light, supermassive black holes and temperature effects.
Popis výsledku v původním jazyce
In this paper, we construct a Schwarzschild metric in the fractal dimension based on fractal calculus, and we study the deflection of light near the sun. It was observed that the new fractal spherically symmetric spacetime metric may describe supermassive black holes, which have been detected through various astronomical observations such as SDSS. We have discussed the deflection of light by the gravitational field of the sun. It was observed that the total deflection of light is affected by the fractal dimension. To estimate the numerical value of the fractal dimension, we have used the 2004 analysis of almost 2 million VLBI observations of 541 radio sources made by 87 VLBI sites, which estimates the factor gamma based on PNN formalism. It was observed that the fractal dimension is roughly less than unity. However, our analysis showed that large bending gravity gives fractal dimensions lower than unity to some extent. We also gave a naive idea about the emission thermal Unruh process in fractal dimension. It was observed that both the temperature and the entropy of black holes are affected by the fractal dimension, and that for low numerical values, the entropy of the black hole is enhanced.
Název v anglickém jazyce
Schwarzschild spacetime in fractal dimensions: Deflection of light, supermassive black holes and temperature effects.
Popis výsledku anglicky
In this paper, we construct a Schwarzschild metric in the fractal dimension based on fractal calculus, and we study the deflection of light near the sun. It was observed that the new fractal spherically symmetric spacetime metric may describe supermassive black holes, which have been detected through various astronomical observations such as SDSS. We have discussed the deflection of light by the gravitational field of the sun. It was observed that the total deflection of light is affected by the fractal dimension. To estimate the numerical value of the fractal dimension, we have used the 2004 analysis of almost 2 million VLBI observations of 541 radio sources made by 87 VLBI sites, which estimates the factor gamma based on PNN formalism. It was observed that the fractal dimension is roughly less than unity. However, our analysis showed that large bending gravity gives fractal dimensions lower than unity to some extent. We also gave a naive idea about the emission thermal Unruh process in fractal dimension. It was observed that both the temperature and the entropy of black holes are affected by the fractal dimension, and that for low numerical values, the entropy of the black hole is enhanced.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Modern Physics Letters A
ISSN
0217-7323
e-ISSN
1793-6632
Svazek periodika
39
Číslo periodika v rámci svazku
25N26
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
10
Strana od-do
2450124
Kód UT WoS článku
001325866700008
EID výsledku v databázi Scopus
2-s2.0-85202767843