Unmanned Surveillance Problem: Mathematical Formulation, Solution Algorithms and Experiments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F20%3A00555980" target="_blank" >RIV/60162694:G42__/20:00555980 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mors.org/Publications/MOR-Journal/Search-Purchase-Issues/2020-MOR-Journal/BKctl/ViewDetails/MID/26672/SKU/MOR250231" target="_blank" >https://www.mors.org/Publications/MOR-Journal/Search-Purchase-Issues/2020-MOR-Journal/BKctl/ViewDetails/MID/26672/SKU/MOR250231</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5711/1082598325231" target="_blank" >10.5711/1082598325231</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unmanned Surveillance Problem: Mathematical Formulation, Solution Algorithms and Experiments
Popis výsledku v původním jazyce
Modern technologies used both in military operations, as well as in many civil applications, have become common practice in recent years. Unmanned aerial vehicles play a key role in tasks such as monitoring and inspection, reconnaissance, surveillance, mapping or networking. This article deals with the Unmanned Surveillance Problem which is a problem of the path planning for a fleet of unmanned aerial vehicles performing persistent surveillance of a ground area of interest. The surveillance is performed via sensor systems of individual drones from a set of waypoints deployed in the area of operations. The objective of the problem is to plan a route (i.e. the order in which the waypoints are visited) of every vehicle in the fleet to ensure the best observation of the area of interest. In this article, a new mathematical formulation of the problem is presented. The novelty in this formulation consists in a new perspective on the objective function which is based on an integral of time function to minimize time between observations of portions of the area conducted from waypoints. For the solution, three deterministic approaches are proposed. To evaluate the results, a set of benchmark instances for the problem is defined. The solution algorithms are analysed and evaluated by experiments conducted on the benchmark instances. The best approach is shown to be the algorithm which uses a Multi-Depot Vehicle Routing Problem solution as a template to generate a solution for the unmanned surveillance problem.
Název v anglickém jazyce
Unmanned Surveillance Problem: Mathematical Formulation, Solution Algorithms and Experiments
Popis výsledku anglicky
Modern technologies used both in military operations, as well as in many civil applications, have become common practice in recent years. Unmanned aerial vehicles play a key role in tasks such as monitoring and inspection, reconnaissance, surveillance, mapping or networking. This article deals with the Unmanned Surveillance Problem which is a problem of the path planning for a fleet of unmanned aerial vehicles performing persistent surveillance of a ground area of interest. The surveillance is performed via sensor systems of individual drones from a set of waypoints deployed in the area of operations. The objective of the problem is to plan a route (i.e. the order in which the waypoints are visited) of every vehicle in the fleet to ensure the best observation of the area of interest. In this article, a new mathematical formulation of the problem is presented. The novelty in this formulation consists in a new perspective on the objective function which is based on an integral of time function to minimize time between observations of portions of the area conducted from waypoints. For the solution, three deterministic approaches are proposed. To evaluate the results, a set of benchmark instances for the problem is defined. The solution algorithms are analysed and evaluated by experiments conducted on the benchmark instances. The best approach is shown to be the algorithm which uses a Multi-Depot Vehicle Routing Problem solution as a template to generate a solution for the unmanned surveillance problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Military Operations Research
ISSN
1082-5983
e-ISSN
2163-2758
Svazek periodika
25
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
31-47
Kód UT WoS článku
000554574200002
EID výsledku v databázi Scopus
—