Model of Surveillance in Complex Environment Using a Swarm of Unmanned Aerial Vehicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F21%3A00556834" target="_blank" >RIV/60162694:G42__/21:00556834 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.springer.com/series/558" target="_blank" >https://www.springer.com/series/558</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-70740-8_15" target="_blank" >10.1007/978-3-030-70740-8_15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model of Surveillance in Complex Environment Using a Swarm of Unmanned Aerial Vehicles
Popis výsledku v původním jazyce
This paper examines the model of autonomous surveillance using a swarm of unmanned aerial vehicles with the simultaneous detection principle. This model enables to specify a number of sensors needed to detect an object of interest located in the area of interest; objects are detected only if scanned by the specified number of sensors simultaneously. The model plans deployment of individual vehicles in the swarm during the surveillance operation in a such a way that the surveillance is performed in the maximum quality; the quality is measured as a percentage of the area of interest that is covered during the operation. Furthermore, the surveillance is assumed to be conducted in the complex area of operations (including urban environments, build-up areas, or mountain environments with very uneven terrain) where occlusions caused by obstacles or terrain may occur often. For solution, the metaheuristic algorithm based on the simulated annealing is proposed. This algorithm deploys the number of waypoints, from which the monitoring is performed, maximizing the surveillance quality and taking the simultaneous detection principle into consideration. The algorithm is verified by a set of experiments based on typical surveillance scenarios.
Název v anglickém jazyce
Model of Surveillance in Complex Environment Using a Swarm of Unmanned Aerial Vehicles
Popis výsledku anglicky
This paper examines the model of autonomous surveillance using a swarm of unmanned aerial vehicles with the simultaneous detection principle. This model enables to specify a number of sensors needed to detect an object of interest located in the area of interest; objects are detected only if scanned by the specified number of sensors simultaneously. The model plans deployment of individual vehicles in the swarm during the surveillance operation in a such a way that the surveillance is performed in the maximum quality; the quality is measured as a percentage of the area of interest that is covered during the operation. Furthermore, the surveillance is assumed to be conducted in the complex area of operations (including urban environments, build-up areas, or mountain environments with very uneven terrain) where occlusions caused by obstacles or terrain may occur often. For solution, the metaheuristic algorithm based on the simulated annealing is proposed. This algorithm deploys the number of waypoints, from which the monitoring is performed, maximizing the surveillance quality and taking the simultaneous detection principle into consideration. The algorithm is verified by a set of experiments based on typical surveillance scenarios.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-70739-2
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
19
Strana od-do
231-249
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Cham
Místo konání akce
Virtual, Online
Datum konání akce
21. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000763018100015