Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Increase Supply Chain Resilience by Applying Early Warning Signals within Big-Data Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F23%3A00558929" target="_blank" >RIV/60162694:G42__/23:00558929 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://hrcak.srce.hr/ojs/index.php/ekonomski-vjesnik/article/view/24686" target="_blank" >https://hrcak.srce.hr/ojs/index.php/ekonomski-vjesnik/article/view/24686</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.51680/ev.35.2.17" target="_blank" >10.51680/ev.35.2.17</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Increase Supply Chain Resilience by Applying Early Warning Signals within Big-Data Analysis

  • Popis výsledku v původním jazyce

    Purpose: The current environment of globally interconnected supply chains, the dynamics of changes and potential threats significantly reduce the time for a possible response. At the same time, there is a growing demand for information necessary to mitigate the consequences. To minimise the damage and increase the resilience of supply chains, it is necessary to identify sources of threats promptly, the extent of possible damage and the possibility of preventing or minimising their impact. The aim of the paper is to structure supply chain threats and search for appropriate datasets for prevention. Methodology: The paper analyses the state-of-the-art through a comprehensive literature review and demonstrates secondary data about how free-access business data can be used as Early Warning Signals to forecast supply chain disruptive events, with a particular focus on international maritime transportation. Results: It was confirmed that companies can access many open datasets, and collecting and aggregating these data can improve their preparedness for future disruptive events. As the most important issue, the authors defined the selection of proper datasets and interpreting results with foresight. Conclusions: Identifying and analysing the relevant Early Warning Signals by companies to prevent supply chain disruptions are essential for keeping their supply chains sustainable and their resilience on a sufficient level. It was proved that general business indicators (PMI delivery time, container capacity, inflation rate, etc.) can help to signal the increasing possibility of maritime traffic problems in ports and container unavailability as usual supply chain disruption types in recent years. Therefore, the companies in the supply chains need to find, collect and analyse the appropriate data, which are, in some cases, free and available. However, it is a substantial task for data analysts to identify the most relevant data and work out the analytical methodology which can be applied as Early Warning Systems (EWS).

  • Název v anglickém jazyce

    Increase Supply Chain Resilience by Applying Early Warning Signals within Big-Data Analysis

  • Popis výsledku anglicky

    Purpose: The current environment of globally interconnected supply chains, the dynamics of changes and potential threats significantly reduce the time for a possible response. At the same time, there is a growing demand for information necessary to mitigate the consequences. To minimise the damage and increase the resilience of supply chains, it is necessary to identify sources of threats promptly, the extent of possible damage and the possibility of preventing or minimising their impact. The aim of the paper is to structure supply chain threats and search for appropriate datasets for prevention. Methodology: The paper analyses the state-of-the-art through a comprehensive literature review and demonstrates secondary data about how free-access business data can be used as Early Warning Signals to forecast supply chain disruptive events, with a particular focus on international maritime transportation. Results: It was confirmed that companies can access many open datasets, and collecting and aggregating these data can improve their preparedness for future disruptive events. As the most important issue, the authors defined the selection of proper datasets and interpreting results with foresight. Conclusions: Identifying and analysing the relevant Early Warning Signals by companies to prevent supply chain disruptions are essential for keeping their supply chains sustainable and their resilience on a sufficient level. It was proved that general business indicators (PMI delivery time, container capacity, inflation rate, etc.) can help to signal the increasing possibility of maritime traffic problems in ports and container unavailability as usual supply chain disruption types in recent years. Therefore, the companies in the supply chains need to find, collect and analyse the appropriate data, which are, in some cases, free and available. However, it is a substantial task for data analysts to identify the most relevant data and work out the analytical methodology which can be applied as Early Warning Systems (EWS).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50201 - Economic Theory

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/CK03000182" target="_blank" >CK03000182: Výzkum stavebně-technických požadavků na využití národní pozemní infrastruktury TEN-T k řešení krizových situací velkého rozsahu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ekonomski vjesnik/Econviews - Review of Contemporary Business, Entrepreneurship and Economic Issues

  • ISSN

    0353-359X

  • e-ISSN

    1847-2206

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    HR - Chorvatská republika

  • Počet stran výsledku

    15

  • Strana od-do

    467-481

  • Kód UT WoS článku

    000903265600001

  • EID výsledku v databázi Scopus