Reliability Estimation of Critical Infrastructure Segment Backed up by the Circular Data Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F25%3A00560218" target="_blank" >RIV/60162694:G42__/25:00560218 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60162694:G43__/25:00560218
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10171240" target="_blank" >http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10171240</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICMT58149.2023.10171311" target="_blank" >10.1109/ICMT58149.2023.10171311</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reliability Estimation of Critical Infrastructure Segment Backed up by the Circular Data Analysis
Popis výsledku v původním jazyce
In this paper, we present a novel statistical approach to assess and model data of water distribution network (WDN) failures which contain only few pieces of information, namely the number of failures in a month. The applied statistical method is known as the circular (directional) statistics. It concerns with angular/cyclical data in degrees or radians. The sample space is typically a circle or a sphere and due to the nature of the circular data, they cannot be analysed with commonly used statistical techniques. Circular data approaches can be adapted to analyse time-of-year data and year cycles. Using the methods of descriptive and inferential statistics for circular data, we show that the WDN failure data show a deviation from the uniform model and cannot be modelled by the parametric models. Therefore, we apply the nonparametric circular kernel density estimates to assess and model the data and predict the expected numbers of failures in the respective months of a year.
Název v anglickém jazyce
Reliability Estimation of Critical Infrastructure Segment Backed up by the Circular Data Analysis
Popis výsledku anglicky
In this paper, we present a novel statistical approach to assess and model data of water distribution network (WDN) failures which contain only few pieces of information, namely the number of failures in a month. The applied statistical method is known as the circular (directional) statistics. It concerns with angular/cyclical data in degrees or radians. The sample space is typically a circle or a sphere and due to the nature of the circular data, they cannot be analysed with commonly used statistical techniques. Circular data approaches can be adapted to analyse time-of-year data and year cycles. Using the methods of descriptive and inferential statistics for circular data, we show that the WDN failure data show a deviation from the uniform model and cannot be modelled by the parametric models. Therefore, we apply the nonparametric circular kernel density estimates to assess and model the data and predict the expected numbers of failures in the respective months of a year.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 9th International Conference on Military Technologies, ICMT 2023 - Proceedings
ISBN
979-8-3503-2568-3
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
—
Místo konání akce
Brno
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—