Multi-Depot Vehicle Routing Problem with Drones: Mathematical Formulation, Solution Algorithm and Experiments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F25%3A00560709" target="_blank" >RIV/60162694:G42__/25:00560709 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417423029858" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417423029858</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2023.122483" target="_blank" >10.1016/j.eswa.2023.122483</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Depot Vehicle Routing Problem with Drones: Mathematical Formulation, Solution Algorithm and Experiments
Popis výsledku v původním jazyce
The use of Unmanned Aerial Vehicles (UAVs) is expected to grow rapidly in the coming years, driven by technological advancements, cost-effectiveness, and the increasing demand for faster and more efficient delivery solutions. This article deals with the mathematical formulation of the Multi-Depot Vehicle Routing Problem with Drones (MDVRP-D), whereby a set of heterogeneous trucks, each paired with a UAV, are located in different depots. Both types of vehicles deliver goods to customers; UAVs are dispatched from trucks while en route to make the last-mile delivery. A metaheuristic algorithm based on the Ant Colony Optimization (ACO) principle is proposed as the solution. This algorithm has been adapted for this newly proposed problem; the novel mechanics include the probabilistic decision to dispatch an UAV, the selection of a customer to be served, and local search optimization. Extensive computational experiments are performed to verify the proposed algorithm. First, its performance is compared with Adaptive Large Neighborhood Search (ALNS) metaheuristics on a set of Vehicle Routing Problem with Drones (VRP-D) benchmarks. A set of various benchmark instances are subsequently proposed for the newly formulated MDVRP-D (differing in complexity and graph topology). Finally, the behavior of the proposed algorithm is thoroughly analyzed, especially in respect of features connected with UAVs. The findings presented in this article provide valuable contributions to the NP-hard models related to the Travelling Salesman Problem (TSP) and to the very popular ACO-based algorithms.
Název v anglickém jazyce
Multi-Depot Vehicle Routing Problem with Drones: Mathematical Formulation, Solution Algorithm and Experiments
Popis výsledku anglicky
The use of Unmanned Aerial Vehicles (UAVs) is expected to grow rapidly in the coming years, driven by technological advancements, cost-effectiveness, and the increasing demand for faster and more efficient delivery solutions. This article deals with the mathematical formulation of the Multi-Depot Vehicle Routing Problem with Drones (MDVRP-D), whereby a set of heterogeneous trucks, each paired with a UAV, are located in different depots. Both types of vehicles deliver goods to customers; UAVs are dispatched from trucks while en route to make the last-mile delivery. A metaheuristic algorithm based on the Ant Colony Optimization (ACO) principle is proposed as the solution. This algorithm has been adapted for this newly proposed problem; the novel mechanics include the probabilistic decision to dispatch an UAV, the selection of a customer to be served, and local search optimization. Extensive computational experiments are performed to verify the proposed algorithm. First, its performance is compared with Adaptive Large Neighborhood Search (ALNS) metaheuristics on a set of Vehicle Routing Problem with Drones (VRP-D) benchmarks. A set of various benchmark instances are subsequently proposed for the newly formulated MDVRP-D (differing in complexity and graph topology). Finally, the behavior of the proposed algorithm is thoroughly analyzed, especially in respect of features connected with UAVs. The findings presented in this article provide valuable contributions to the NP-hard models related to the Travelling Salesman Problem (TSP) and to the very popular ACO-based algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EXPERT SYSTEMS WITH APPLICATIONS
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
241
Číslo periodika v rámci svazku
1 May 2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
122483
Kód UT WoS článku
001129525300001
EID výsledku v databázi Scopus
2-s2.0-85179010514