Some Topological and Algebraic Properties of alpha-level Subsets' Topology of a Fuzzy Subset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F18%3A00536239" target="_blank" >RIV/60162694:G43__/18:00536239 - isvavai.cz</a>
Výsledek na webu
<a href="https://drive.google.com/drive/folders/1-1mM9UuI3RRE5aAi3PyuF1J4Llw_aveG?usp=sharing" target="_blank" >https://drive.google.com/drive/folders/1-1mM9UuI3RRE5aAi3PyuF1J4Llw_aveG?usp=sharing</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/auom-2018-0042" target="_blank" >10.2478/auom-2018-0042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Some Topological and Algebraic Properties of alpha-level Subsets' Topology of a Fuzzy Subset
Popis výsledku v původním jazyce
The theory of fuzzy sets, since its foundation, has advanced in a wide range of means and in many fields. One of the areas to which fuzzy set theory has been applied extensively is mathematical programming. Nevertheless, the applications of fuzzy theory can be found in e.g. logic, decision theory, artificial intelligence, computer science, control engineering, expert systems, management science, operations research, robotics, and others. Theoretical improvements have been made in many directions. Nowadays it has a lot of applications also on possibility theory, actuarial credibility theory, fuzzy logic and approximate reasoning, fuzzy control, fuzzy data analysis, fuzzy set models in operations research, etc. The aim of this paper is to investigate some topological properties of a set X when the topology defined on it is the collection of all the alpha-level subsets of a fuzzy subset A of X. We have been able to establish some results regarding fuzzy cluster level subsets, convergence of level subsets and quasicompactness among others.
Název v anglickém jazyce
Some Topological and Algebraic Properties of alpha-level Subsets' Topology of a Fuzzy Subset
Popis výsledku anglicky
The theory of fuzzy sets, since its foundation, has advanced in a wide range of means and in many fields. One of the areas to which fuzzy set theory has been applied extensively is mathematical programming. Nevertheless, the applications of fuzzy theory can be found in e.g. logic, decision theory, artificial intelligence, computer science, control engineering, expert systems, management science, operations research, robotics, and others. Theoretical improvements have been made in many directions. Nowadays it has a lot of applications also on possibility theory, actuarial credibility theory, fuzzy logic and approximate reasoning, fuzzy control, fuzzy data analysis, fuzzy set models in operations research, etc. The aim of this paper is to investigate some topological properties of a set X when the topology defined on it is the collection of all the alpha-level subsets of a fuzzy subset A of X. We have been able to establish some results regarding fuzzy cluster level subsets, convergence of level subsets and quasicompactness among others.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
An. St. Univ. Ovidius Constanta
ISSN
1224-1784
e-ISSN
1844-0835
Svazek periodika
26
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
RO - Rumunsko
Počet stran výsledku
15
Strana od-do
213-227
Kód UT WoS článku
000453259100014
EID výsledku v databázi Scopus
—