The Sum of the Series of Reciprocals of the Quadratic Polynomials with Complex Conjugate Roots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F18%3A00536325" target="_blank" >RIV/60162694:G43__/18:00536325 - isvavai.cz</a>
Výsledek na webu
<a href="http://eiris.it/ojs/index.php/ratiomathematica/issue/view/VOL%2035%20(2018)" target="_blank" >http://eiris.it/ojs/index.php/ratiomathematica/issue/view/VOL%2035%20(2018)</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23755/rm.v35i0.427" target="_blank" >10.23755/rm.v35i0.427</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Sum of the Series of Reciprocals of the Quadratic Polynomials with Complex Conjugate Roots
Popis výsledku v původním jazyce
This contribution is a follow-up to eight preceding author's papers dealing with the sums of the series of reciprocals of quadratic polynomials with different positive integer roots, with double non-positive integer root, with different negative integer roots, with double positive integer root, with one negative and one positive integer root, with purely imaginary conjugate roots, with integer roots, and with the sum of the finite series of reciprocals of the quadratic polynomials with integer purely imaginary conjugate roots respectively. We deal with the sum of the series of reciprocals of the quadratic polynomials with complex conjugate roots, derive the formula for the sum of these series and verify it by some examples evaluated using the basic programming language of the computer algebra system Maple 16. This contribution can be an inspiration for teachers of mathematics who are teaching the topic Infinite series or as a subject matter for work with talented students.
Název v anglickém jazyce
The Sum of the Series of Reciprocals of the Quadratic Polynomials with Complex Conjugate Roots
Popis výsledku anglicky
This contribution is a follow-up to eight preceding author's papers dealing with the sums of the series of reciprocals of quadratic polynomials with different positive integer roots, with double non-positive integer root, with different negative integer roots, with double positive integer root, with one negative and one positive integer root, with purely imaginary conjugate roots, with integer roots, and with the sum of the finite series of reciprocals of the quadratic polynomials with integer purely imaginary conjugate roots respectively. We deal with the sum of the series of reciprocals of the quadratic polynomials with complex conjugate roots, derive the formula for the sum of these series and verify it by some examples evaluated using the basic programming language of the computer algebra system Maple 16. This contribution can be an inspiration for teachers of mathematics who are teaching the topic Infinite series or as a subject matter for work with talented students.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ratio Mathematica - Journal of Foundations and Applications of Mathematics
ISSN
1592-7415
e-ISSN
2282-8214
Svazek periodika
35
Číslo periodika v rámci svazku
2/2018
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
11
Strana od-do
75-85
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—