Algebraic Hyperstructure of Multi-Fuzzy Soft Sets Related to Polygroups
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F23%3A00558113" target="_blank" >RIV/60162694:G43__/23:00558113 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/10/13/2178/pdf?version=1655901801" target="_blank" >https://www.mdpi.com/2227-7390/10/13/2178/pdf?version=1655901801</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10132178" target="_blank" >10.3390/math10132178</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algebraic Hyperstructure of Multi-Fuzzy Soft Sets Related to Polygroups
Popis výsledku v původním jazyce
The combination of two elements in a group structure is an element, while, in a hypergroup, the combination of two elements is a non-empty set. The use of hypergroups appears mainly in certain subclasses. For instance, polygroups, which are a special subcategory of hypergroups, are used in many branches of mathematics and basic sciences. On the other hand, in a multi-fuzzy set, an element of a universal set may occur more than once with possibly the same or different membership values. A soft set over a universal set is a mapping from parameters to the family of subsets of the universal set. If we substitute the set of all fuzzy subsets of the universal set instead of crisp subsets, then we obtain fuzzy soft sets. Similarly, multi-fuzzy soft sets can be obtained. In this paper, we combine the multi-fuzzy soft set and polygroup structure, from which we obtain a new soft structure called the multi-fuzzy soft polygroup. We analyze the relation between multi-fuzzy soft sets and polygroups. Some algebraic properties of fuzzy soft polygroups and soft polygroups are extended to multi-fuzzy soft polygroups. Some new operations on a multi-fuzzy soft set are defined. In addition to this, we investigate normal multi-fuzzy soft polygroups and present some of their algebraic properties.
Název v anglickém jazyce
Algebraic Hyperstructure of Multi-Fuzzy Soft Sets Related to Polygroups
Popis výsledku anglicky
The combination of two elements in a group structure is an element, while, in a hypergroup, the combination of two elements is a non-empty set. The use of hypergroups appears mainly in certain subclasses. For instance, polygroups, which are a special subcategory of hypergroups, are used in many branches of mathematics and basic sciences. On the other hand, in a multi-fuzzy set, an element of a universal set may occur more than once with possibly the same or different membership values. A soft set over a universal set is a mapping from parameters to the family of subsets of the universal set. If we substitute the set of all fuzzy subsets of the universal set instead of crisp subsets, then we obtain fuzzy soft sets. Similarly, multi-fuzzy soft sets can be obtained. In this paper, we combine the multi-fuzzy soft set and polygroup structure, from which we obtain a new soft structure called the multi-fuzzy soft polygroup. We analyze the relation between multi-fuzzy soft sets and polygroups. Some algebraic properties of fuzzy soft polygroups and soft polygroups are extended to multi-fuzzy soft polygroups. Some new operations on a multi-fuzzy soft set are defined. In addition to this, we investigate normal multi-fuzzy soft polygroups and present some of their algebraic properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MATHEMATICS
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
10
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
2178
Kód UT WoS článku
000823497100001
EID výsledku v databázi Scopus
2-s2.0-85133153297