A Survey on the Use of Deep Learning Techniques for UAV Jamming and Deception
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F23%3A00558299" target="_blank" >RIV/60162694:G43__/23:00558299 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/22:PU145682
Výsledek na webu
<a href="https://www.mdpi.com/2079-9292/11/19/3025" target="_blank" >https://www.mdpi.com/2079-9292/11/19/3025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/electronics11193025" target="_blank" >10.3390/electronics11193025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Survey on the Use of Deep Learning Techniques for UAV Jamming and Deception
Popis výsledku v původním jazyce
Unmanned aerial vehicles (UAVs) can be used for a variety of illegal activities (e.g., industrial espionage, smuggling, terrorism). Given their growing popularity and availability, and advances in communications technology, more sophisticated ways to disable these vehicles must be sought. Various forms of jamming are used to disable drones, but more advanced techniques such as deception and UAV takeover are considerably difficult to implement, and there is a large research gap in this area. Currently, machine and deep learning techniques are popular and are also used in various drone-related applications. However, no detailed research has been conducted so far on the use of these techniques for jamming and deception of UAVs. This paper focuses on exploring the current techniques in the area of jamming and deception. A survey on the use of machine or deep learning specifically in UAV-related applications is also conducted. The paper provides insight into the issues described and encourages more detailed research in this area.
Název v anglickém jazyce
A Survey on the Use of Deep Learning Techniques for UAV Jamming and Deception
Popis výsledku anglicky
Unmanned aerial vehicles (UAVs) can be used for a variety of illegal activities (e.g., industrial espionage, smuggling, terrorism). Given their growing popularity and availability, and advances in communications technology, more sophisticated ways to disable these vehicles must be sought. Various forms of jamming are used to disable drones, but more advanced techniques such as deception and UAV takeover are considerably difficult to implement, and there is a large research gap in this area. Currently, machine and deep learning techniques are popular and are also used in various drone-related applications. However, no detailed research has been conducted so far on the use of these techniques for jamming and deception of UAVs. This paper focuses on exploring the current techniques in the area of jamming and deception. A survey on the use of machine or deep learning specifically in UAV-related applications is also conducted. The paper provides insight into the issues described and encourages more detailed research in this area.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TM02000035" target="_blank" >TM02000035: Pokroková klasifikace signálů (NEOCLASSIG) pro radio-průzkumné systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ELECTRONICS
ISSN
2079-9292
e-ISSN
2079-9292
Svazek periodika
11
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
32
Strana od-do
3025
Kód UT WoS článku
000866677900001
EID výsledku v databázi Scopus
2-s2.0-85139826714