Formulas for the sums of the series of reciprocals of the cubic polynomials with integer roots, at least one zero
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00558725" target="_blank" >RIV/60162694:G43__/24:00558725 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/book/edit/978-0-7503-5067-9" target="_blank" >https://iopscience.iop.org/book/edit/978-0-7503-5067-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/978-0-7503-5067-9ch1" target="_blank" >10.1088/978-0-7503-5067-9ch1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Formulas for the sums of the series of reciprocals of the cubic polynomials with integer roots, at least one zero
Popis výsledku v původním jazyce
This chapter summarizes and complements the author’s five previous papers dealing with the sums of the series of reciprocals of the cubic polynomials with integer roots involving eight special cases. First, the well-known case of triple zero root is recalled. Further, two cases of a double zero root along with another integer root are stated. The formulas for the sums of the relevant series are combined into a single formula. The next part of the chapter presents two cases of a single zero root and a double integer root. In addition to the sub-formulas, the summary formula for the sum of the relevant series is also given. The final part of the chapter presents three cases of a simple zero root and two different integer roots. In addition to the sub-formulas, the summary formula for the sum of the relevant series is derived. This formula, as in the two previous sections, uses harmonic numbers and an auxiliary sigma-function. This formula is verified by some examples using the computer algebra system Maple. Thus, the series we deal with belong to special types of infinite series which sum are given analytically by means of a relatively simple formula.
Název v anglickém jazyce
Formulas for the sums of the series of reciprocals of the cubic polynomials with integer roots, at least one zero
Popis výsledku anglicky
This chapter summarizes and complements the author’s five previous papers dealing with the sums of the series of reciprocals of the cubic polynomials with integer roots involving eight special cases. First, the well-known case of triple zero root is recalled. Further, two cases of a double zero root along with another integer root are stated. The formulas for the sums of the relevant series are combined into a single formula. The next part of the chapter presents two cases of a single zero root and a double integer root. In addition to the sub-formulas, the summary formula for the sum of the relevant series is also given. The final part of the chapter presents three cases of a simple zero root and two different integer roots. In addition to the sub-formulas, the summary formula for the sum of the relevant series is derived. This formula, as in the two previous sections, uses harmonic numbers and an auxiliary sigma-function. This formula is verified by some examples using the computer algebra system Maple. Thus, the series we deal with belong to special types of infinite series which sum are given analytically by means of a relatively simple formula.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Polynomial Paradigms Trends and applications in science and engineering
ISBN
978-0-7503-5067-9
Počet stran výsledku
34
Strana od-do
1-34
Počet stran knihy
382
Název nakladatele
IOP Publishing
Místo vydání
Bristol, United Kingdom
Kód UT WoS kapitoly
—