Analysis of phishing attacks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00560181" target="_blank" >RIV/60162694:G43__/24:00560181 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/978-0-7503-4801-0ch10" target="_blank" >http://dx.doi.org/10.1088/978-0-7503-4801-0ch10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/978-0-7503-4801-0ch10" target="_blank" >10.1088/978-0-7503-4801-0ch10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of phishing attacks
Popis výsledku v původním jazyce
The paper deals with the analysis of phishing emails and modelling of the phishing attacks. In introduction is mentioned definition of phishing, type of messages in content of phishing-email and the basic techniques of phishing email attacks. The research includes three experiments carried out over the course of one year. Data collection was made from email accounts one of the authors in the time interval of one months at begin, middle and end of period. Data was included into tables, which allow better statistical processing and frequency analysis. The important part of the research is the segmentation of emails according to the content of the sent message. Segment Business, Fund, Transfer, Charity, and Others is explained, characterized by key words and one example of typical mail message is introduced. Text analytical SW Tovek is used for analysis and extraction entities (name, email address, phone numbers, geographic data, etc.) from the text of emails. This intelligent function of the SW Tovek in the entities extraction was tested and evaluated.
Název v anglickém jazyce
Analysis of phishing attacks
Popis výsledku anglicky
The paper deals with the analysis of phishing emails and modelling of the phishing attacks. In introduction is mentioned definition of phishing, type of messages in content of phishing-email and the basic techniques of phishing email attacks. The research includes three experiments carried out over the course of one year. Data collection was made from email accounts one of the authors in the time interval of one months at begin, middle and end of period. Data was included into tables, which allow better statistical processing and frequency analysis. The important part of the research is the segmentation of emails according to the content of the sent message. Segment Business, Fund, Transfer, Charity, and Others is explained, characterized by key words and one example of typical mail message is introduced. Text analytical SW Tovek is used for analysis and extraction entities (name, email address, phone numbers, geographic data, etc.) from the text of emails. This intelligent function of the SW Tovek in the entities extraction was tested and evaluated.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Human-Assisted Intelligent Computing: Modelling, simulations and applications
ISBN
978-0-7503-4799-0
Počet stran výsledku
15
Strana od-do
101-115
Počet stran knihy
726
Název nakladatele
Institute of Physics Publishing Ltd.
Místo vydání
Bristol, Velká Británie
Kód UT WoS kapitoly
—