Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigation of conditions necessary for inception of positive corona in air based on differential formulation of photoionization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F24%3A00560205" target="_blank" >RIV/60162694:G43__/24:00560205 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/ace6d0" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ace6d0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ace6d0" target="_blank" >10.1088/1361-6595/ace6d0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigation of conditions necessary for inception of positive corona in air based on differential formulation of photoionization

  • Popis výsledku v původním jazyce

    Sharp point electrodes generate significant electric field enhancements where electron impact ionization leads to the formation of electron avalanches that are seeded by photoionization. Photoionization of molecular oxygen due to extreme ultraviolet emissions from molecular nitrogen is a fundamental process in the inception of a positive corona in air. In a positive corona system, the avalanche of electrons in the bulk of the discharge volume is initiated by a specific distribution of photoionization far away from the region of maximum electron density near the electrode where these photons are emitted. Here, we present a new approach to finding the inception conditions for a positive corona, which is based on a differential formulation of the photoionization problem. The proposed iterative solution considers the same inception problem that has been solved in the existing literature by using either an integral approach to photoionization or a differential formulation of photoionization and considering the inception problem as a boundary-value eigenvalue problem. The results are validated by comparisons with previous integral formulations and time dynamic plasma fluid solutions in planar and spherical geometries. The results illustrate ideas advanced in Kaptzov (1950 Elektricheskiye Yavleniya v Gazakh i Vacuume p 610) providing a physically transparent connection between an effective secondary electron emission coefficient due to volume photoionization in a positive corona system and the secondary electron emission in conventional Townsend discharge theory. The results also demonstrate the significance of boundary conditions for accurate corona solutions that are based on a differential formulation of photoionization.

  • Název v anglickém jazyce

    Investigation of conditions necessary for inception of positive corona in air based on differential formulation of photoionization

  • Popis výsledku anglicky

    Sharp point electrodes generate significant electric field enhancements where electron impact ionization leads to the formation of electron avalanches that are seeded by photoionization. Photoionization of molecular oxygen due to extreme ultraviolet emissions from molecular nitrogen is a fundamental process in the inception of a positive corona in air. In a positive corona system, the avalanche of electrons in the bulk of the discharge volume is initiated by a specific distribution of photoionization far away from the region of maximum electron density near the electrode where these photons are emitted. Here, we present a new approach to finding the inception conditions for a positive corona, which is based on a differential formulation of the photoionization problem. The proposed iterative solution considers the same inception problem that has been solved in the existing literature by using either an integral approach to photoionization or a differential formulation of photoionization and considering the inception problem as a boundary-value eigenvalue problem. The results are validated by comparisons with previous integral formulations and time dynamic plasma fluid solutions in planar and spherical geometries. The results illustrate ideas advanced in Kaptzov (1950 Elektricheskiye Yavleniya v Gazakh i Vacuume p 610) providing a physically transparent connection between an effective secondary electron emission coefficient due to volume photoionization in a positive corona system and the secondary electron emission in conventional Townsend discharge theory. The results also demonstrate the significance of boundary conditions for accurate corona solutions that are based on a differential formulation of photoionization.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLASMA SOURCES SCIENCE & TECHNOLOGY

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    075014

  • Kód UT WoS článku

    001036266900001

  • EID výsledku v databázi Scopus