A New Method for Polyphase Coded Radar Signals Recognition Based on Dual Channel Deep Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F25%3A00564304" target="_blank" >RIV/60162694:G43__/25:00564304 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10726284" target="_blank" >http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10726284</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/NTSP61680.2024.10726319" target="_blank" >10.23919/NTSP61680.2024.10726319</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A New Method for Polyphase Coded Radar Signals Recognition Based on Dual Channel Deep Learning
Popis výsledku v původním jazyce
This paper presents a new method for recognizing polyphase coded radar signals based on dual-channel deep learning. The proposed method includes two stages. In the first step, the Morse Wavelet and continuous Wavelet transforms are used to extract signal features in the time and time-frequency domain. In the second, dual-channel deep learning is designed to recognize radar signals. The first channel uses the extracted feature in the time-frequency domain, and the second uses the phase change of the signals in the time domain. The proposed method's performance is evaluated with simulated signals in a MATLAB environment. The simulation results approved that the proposed method provides a higher accuracy recognition than other methods, which only use single-channel deep learning with signal feature extraction in the time-frequency domain.
Název v anglickém jazyce
A New Method for Polyphase Coded Radar Signals Recognition Based on Dual Channel Deep Learning
Popis výsledku anglicky
This paper presents a new method for recognizing polyphase coded radar signals based on dual-channel deep learning. The proposed method includes two stages. In the first step, the Morse Wavelet and continuous Wavelet transforms are used to extract signal features in the time and time-frequency domain. In the second, dual-channel deep learning is designed to recognize radar signals. The first channel uses the extracted feature in the time-frequency domain, and the second uses the phase change of the signals in the time domain. The proposed method's performance is evaluated with simulated signals in a MATLAB environment. The simulation results approved that the proposed method provides a higher accuracy recognition than other methods, which only use single-channel deep learning with signal feature extraction in the time-frequency domain.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Conference on New Trends in Signal Processing, NTSP 2024
ISBN
978-80-8040-637-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
—
Místo konání akce
Demanovska Dolina, Slovak Republic
Datum konání akce
16. 10. 2024
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—