Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60193247%3A_____%2F18%3AN0000007" target="_blank" >RIV/60193247:_____/18:N0000007 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389021:_____/18:00498202 RIV/00216208:11320/18:10389668
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/journal-of-materials-research/article/spark-plasma-sintering-of-gas-atomized-highentropy-alloy-hfnbtatizr/1BFF9A170BD02AA93CD87ADB9AB0A65D" target="_blank" >https://www.cambridge.org/core/journals/journal-of-materials-research/article/spark-plasma-sintering-of-gas-atomized-highentropy-alloy-hfnbtatizr/1BFF9A170BD02AA93CD87ADB9AB0A65D</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1557/jmr.2018.320" target="_blank" >10.1557/jmr.2018.320</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr
Popis výsledku v původním jazyce
A homogeneous HfNbTaTiZr high-entropy alloy was successfully processed via powder metallurgy route. For the initial powder feedstock material fabrication, the electrode induction-melting gas atomization procedure was used, resulting in a spherical powder morphology and dual bcc phase composition distinguishable within the individual particles. Spark plasma sintering was then used for the powder compaction at sintering temperatures ranging from 800 to 1600 degrees C. By the characterization of the compact microstructures, lattice defects (microscopic porosity and vacancy-like misfit defects), and mechanical properties (hardness and three-point bending strength), the sintering conditions were optimized to obtain a fully dense, homogeneous, single-phase bcc material. It was found that such properties are achieved when sintering at 80 MPa pressure for 2 min at temperatures above 1200 degrees C, where the single bcc phase structure exhibited ductile behavior with considerable flexural strength and ductility at ambient temperature. Positron annihilation spectroscopy was used to characterize the evolution of atomic and mesoscale defects during optimization of the sintering process.
Název v anglickém jazyce
Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr
Popis výsledku anglicky
A homogeneous HfNbTaTiZr high-entropy alloy was successfully processed via powder metallurgy route. For the initial powder feedstock material fabrication, the electrode induction-melting gas atomization procedure was used, resulting in a spherical powder morphology and dual bcc phase composition distinguishable within the individual particles. Spark plasma sintering was then used for the powder compaction at sintering temperatures ranging from 800 to 1600 degrees C. By the characterization of the compact microstructures, lattice defects (microscopic porosity and vacancy-like misfit defects), and mechanical properties (hardness and three-point bending strength), the sintering conditions were optimized to obtain a fully dense, homogeneous, single-phase bcc material. It was found that such properties are achieved when sintering at 80 MPa pressure for 2 min at temperatures above 1200 degrees C, where the single bcc phase structure exhibited ductile behavior with considerable flexural strength and ductility at ambient temperature. Positron annihilation spectroscopy was used to characterize the evolution of atomic and mesoscale defects during optimization of the sintering process.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-17016S" target="_blank" >GA17-17016S: Vliv defektů na vlastnosti biokompatibilních slitin s vysokou entropií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF MATERIALS RESEARCH
ISSN
0884-2914
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
3247-3257
Kód UT WoS článku
000452650400027
EID výsledku v databázi Scopus
—