Neuronové sítě v systémech pro detekci napadení
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F04%3A5038" target="_blank" >RIV/60460709:41110/04:5038 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural networks in intrusion detection systems
Popis výsledku v původním jazyce
Security of an information system is its very important property, especially today, when computers are interconnected via internet. Because no system can be absolutely secure, the timely and accurate detection of intrusions is necessary. For this purposeIntrusion Detection Systems (IDS) were designed. There are two basic models of IDS: misuse IDS and anomaly IDS. Misuse systems detect intrusions by looking for activity that corresponds to known signatures of intrusions or vulnerabilities. Anomaly systems detect intrusions by searching abnormal system activity. Most IDS commercial tools are misuse systems with rule-based expert system structure. However these techniques are less successful when attack characteristics vary from built in signatures. Artificial neural networks offer the potential to resolve these problems. As far as anomaly systems are concerned, it is very difficult to build them, because it is difficult to define normal and abnormal behaviour of a system. Also for build
Název v anglickém jazyce
Neural networks in intrusion detection systems
Popis výsledku anglicky
Security of an information system is its very important property, especially today, when computers are interconnected via internet. Because no system can be absolutely secure, the timely and accurate detection of intrusions is necessary. For this purposeIntrusion Detection Systems (IDS) were designed. There are two basic models of IDS: misuse IDS and anomaly IDS. Misuse systems detect intrusions by looking for activity that corresponds to known signatures of intrusions or vulnerabilities. Anomaly systems detect intrusions by searching abnormal system activity. Most IDS commercial tools are misuse systems with rule-based expert system structure. However these techniques are less successful when attack characteristics vary from built in signatures. Artificial neural networks offer the potential to resolve these problems. As far as anomaly systems are concerned, it is very difficult to build them, because it is difficult to define normal and abnormal behaviour of a system. Also for build
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Zemědělská ekonomika
ISSN
0139-570X
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
5
Strana od-do
35-39
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—