Possibilities of Utilization of Univariate Time Series Analysis in Prices Modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F16%3A71350" target="_blank" >RIV/60460709:41110/16:71350 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Possibilities of Utilization of Univariate Time Series Analysis in Prices Modelling
Popis výsledku v původním jazyce
The paper deals with an examination of possibilities of utilization of univariate time series analysis for description and forecasting of agri-food prices. The analysis is based on monthly time series of farm-gate price, wholesale price and consumer price in 9 agri-food chains in the Czech Republic; 22 time series were examined in period January 2000 – June 2015. Based on Box-Jenkins methodology an appropriate ARIMA models were estimated. Then, the future development of individual time series was forecasted for prognostic horizon of 6 periods and evaluated based on MAPE values. The analysis proved non-stationarity of almost all time series and suitability of ARIMA model utilization in agri-food prices modelling. The suitability of ARIMA models for prognostic purposes was proven in almost all analyzed time series; however, some time series should be forecasted rather using other time series model. Generally, ARIMA model might be considered as an appropriate tool for agri-food prices modelling and fore
Název v anglickém jazyce
Possibilities of Utilization of Univariate Time Series Analysis in Prices Modelling
Popis výsledku anglicky
The paper deals with an examination of possibilities of utilization of univariate time series analysis for description and forecasting of agri-food prices. The analysis is based on monthly time series of farm-gate price, wholesale price and consumer price in 9 agri-food chains in the Czech Republic; 22 time series were examined in period January 2000 – June 2015. Based on Box-Jenkins methodology an appropriate ARIMA models were estimated. Then, the future development of individual time series was forecasted for prognostic horizon of 6 periods and evaluated based on MAPE values. The analysis proved non-stationarity of almost all time series and suitability of ARIMA model utilization in agri-food prices modelling. The suitability of ARIMA models for prognostic purposes was proven in almost all analyzed time series; however, some time series should be forecasted rather using other time series model. Generally, ARIMA model might be considered as an appropriate tool for agri-food prices modelling and fore
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
GA - Zemědělská ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AGRARIAN PERSPECTIVES XXV. - PROCEEDINGS
ISBN
978-80-213-2670-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
319-326
Název nakladatele
CULS
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
14. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—