Classification of the educational texts styles with the methods of artificial intelligence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F17%3A74713" target="_blank" >RIV/60460709:41110/17:74713 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of the educational texts styles with the methods of artificial intelligence
Popis výsledku v původním jazyce
Modern educational methods emphasize the necessity to transfer knowl- edge instead of data or information within the educational process. Thus it is important to the educational texts supporting the educational process contain knowledge in a particular textual representation. But it is not trivial to decide whether the particular piece of text contain knowledge or not. The solution is to measure the similarity between the particular text structure and a typical structure of a knowledge-designed text. This research aims at analysing the classification ability of three commonly- used classification techniques: artificial neural networks (ANNs), classification and regression trees (CARTs) and decision trees (bigMLs) to separate texts or text fragments into two groups. The texts in the first group contain mainly data and information (common texts), the texts in the other group contain knowledge in one of the particular knowledge representations (knowledge texts). The sample
Název v anglickém jazyce
Classification of the educational texts styles with the methods of artificial intelligence
Popis výsledku anglicky
Modern educational methods emphasize the necessity to transfer knowl- edge instead of data or information within the educational process. Thus it is important to the educational texts supporting the educational process contain knowledge in a particular textual representation. But it is not trivial to decide whether the particular piece of text contain knowledge or not. The solution is to measure the similarity between the particular text structure and a typical structure of a knowledge-designed text. This research aims at analysing the classification ability of three commonly- used classification techniques: artificial neural networks (ANNs), classification and regression trees (CARTs) and decision trees (bigMLs) to separate texts or text fragments into two groups. The texts in the first group contain mainly data and information (common texts), the texts in the other group contain knowledge in one of the particular knowledge representations (knowledge texts). The sample
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Baltic Science Education
ISSN
1648-3898
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
324-336
Kód UT WoS článku
000404118100005
EID výsledku v databázi Scopus
2-s2.0-85021289461