Patterns of User Participation and Contribution in Global Crowdsourcing: A Data Mining Study of Stack Overflow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F22%3A92651" target="_blank" >RIV/60460709:41110/22:92651 - isvavai.cz</a>
Výsledek na webu
<a href="https://ceur-ws.org/Vol-3293/paper30.pdf" target="_blank" >https://ceur-ws.org/Vol-3293/paper30.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Patterns of User Participation and Contribution in Global Crowdsourcing: A Data Mining Study of Stack Overflow
Popis výsledku v původním jazyce
Among many popular crowdsourcing platforms, the Question and Answer website Stack Overflow in Stack Exchange Network is used daily to share knowledge globally by millions of software professionals. Therefore, Stack Overflow data can reveal important patterns in global crowdsourcing beneficial for software industry. The aim of this study was to perform data mining on Stack Overflow data, to discover some of these patterns. Focus of this research was to analyze the global user distribution and contribution. Big data analytic techniques were used for data mining activities using Apache Spark with Python language. Oracle Data Visualization Desktop and scikit-learn python library were used for visualization. The results show that although majority of the users are from USA and India, the average contribution is higher in European countries.
Název v anglickém jazyce
Patterns of User Participation and Contribution in Global Crowdsourcing: A Data Mining Study of Stack Overflow
Popis výsledku anglicky
Among many popular crowdsourcing platforms, the Question and Answer website Stack Overflow in Stack Exchange Network is used daily to share knowledge globally by millions of software professionals. Therefore, Stack Overflow data can reveal important patterns in global crowdsourcing beneficial for software industry. The aim of this study was to perform data mining on Stack Overflow data, to discover some of these patterns. Focus of this research was to analyze the global user distribution and contribution. Big data analytic techniques were used for data mining activities using Apache Spark with Python language. Oracle Data Visualization Desktop and scikit-learn python library were used for visualization. The results show that although majority of the users are from USA and India, the average contribution is higher in European countries.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 10th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2022)
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
8
Strana od-do
143-150
Název nakladatele
CEUR Workshop Proceedings (CEUR-WS.org)
Místo vydání
Athens, Greece
Místo konání akce
Athens, Greece
Datum konání akce
22. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—