Multiple Data Cubes and the Best Compromise Matrix for the OLAP in Multi-agent System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F23%3A92870" target="_blank" >RIV/60460709:41110/23:92870 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21438-7_84" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21438-7_84</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21438-7_84" target="_blank" >10.1007/978-3-031-21438-7_84</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiple Data Cubes and the Best Compromise Matrix for the OLAP in Multi-agent System
Popis výsledku v původním jazyce
Multi-agent systems are systems that can perceive the environment through their sensors and perform actions through their actuators. Multi-agent systems are thus an interesting alternative or complement to artificial intelligence. One of the key problems of these systems is designing the principles of agent behavior through coordination, cooperation, and communication, which bring order to the actions of agents and ensure that there are no contradictions in the system. The development of OLAP technology to support online analytical data processing enables the use multidimensional data stores directly by individual agents. In this way, the agent can streamline the analytical processing of the data to find a match between its intention and the plan. For the resulting multi-agent system to find the maximum possible agreement between its agents, we propose a new conceptual approach, which is based on the use of OLAP technology for storing analytical data by specific agents, and we propose the so-called Compromise Decision Agent, which calculates compromise values from all agents in the system.
Název v anglickém jazyce
Multiple Data Cubes and the Best Compromise Matrix for the OLAP in Multi-agent System
Popis výsledku anglicky
Multi-agent systems are systems that can perceive the environment through their sensors and perform actions through their actuators. Multi-agent systems are thus an interesting alternative or complement to artificial intelligence. One of the key problems of these systems is designing the principles of agent behavior through coordination, cooperation, and communication, which bring order to the actions of agents and ensure that there are no contradictions in the system. The development of OLAP technology to support online analytical data processing enables the use multidimensional data stores directly by individual agents. In this way, the agent can streamline the analytical processing of the data to find a match between its intention and the plan. For the resulting multi-agent system to find the maximum possible agreement between its agents, we propose a new conceptual approach, which is based on the use of OLAP technology for storing analytical data by specific agents, and we propose the so-called Compromise Decision Agent, which calculates compromise values from all agents in the system.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Computational Methods in Systems and Software, CoMeSySo 2022: Data Science and Algorithms in Systems. Lecture Notes in Networks and Systems, vol 597.
ISBN
978-3-031-21438-7
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
10
Strana od-do
980-989
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Online
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000992418500084