The solution of the transport problem by the method of the smallest element based on the use of complex numbers in the algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F23%3A94702" target="_blank" >RIV/60460709:41110/23:94702 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.e3s-conferences.org/articles/e3sconf/abs/2023/39/e3sconf_transsiberia2023_03045/e3sconf_transsiberia2023_03045.html" target="_blank" >https://www.e3s-conferences.org/articles/e3sconf/abs/2023/39/e3sconf_transsiberia2023_03045/e3sconf_transsiberia2023_03045.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/e3sconf/202340203045" target="_blank" >10.1051/e3sconf/202340203045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The solution of the transport problem by the method of the smallest element based on the use of complex numbers in the algorithm
Popis výsledku v původním jazyce
To determine whether a transport problem has a solution , you can use the Lagrange multiplier method . To do this, it is advisable to replace variables so that the objective function is a sum of exponentials. The peculiarity of the sum of exponents is that the principal diagonal minors of the Hessian of the sum of exponents are positive quantities , and therefore the sum of exponents has an extremum and this extremum is the minimum. Solutions of large - dimensional transport tasks are of great practical importance for optimizing transportation schedules by transport enterprises . There are several algorithms for solving this problem, but the development of other methods for solving the transport problem that would use computing power more efficiently deserves attention. The method proposed in this paper for solving the transport problem based on the use of complex numbers in the algorithm makes it simpler and more visual for practical application.
Název v anglickém jazyce
The solution of the transport problem by the method of the smallest element based on the use of complex numbers in the algorithm
Popis výsledku anglicky
To determine whether a transport problem has a solution , you can use the Lagrange multiplier method . To do this, it is advisable to replace variables so that the objective function is a sum of exponentials. The peculiarity of the sum of exponents is that the principal diagonal minors of the Hessian of the sum of exponents are positive quantities , and therefore the sum of exponents has an extremum and this extremum is the minimum. Solutions of large - dimensional transport tasks are of great practical importance for optimizing transportation schedules by transport enterprises . There are several algorithms for solving this problem, but the development of other methods for solving the transport problem that would use computing power more efficiently deserves attention. The method proposed in this paper for solving the transport problem based on the use of complex numbers in the algorithm makes it simpler and more visual for practical application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Scientific Siberian Transport Forum - TransSiberia 2023
ISBN
—
ISSN
2267-1242
e-ISSN
2267-1242
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
E3S Web of Conferences
Místo vydání
402
Místo konání akce
Novosibirsk
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—