Predictive Mapping of Soil Properties for Precision Agriculture Using Geographic Information System (GIS) Based Geostatistics Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F19%3A79648" target="_blank" >RIV/60460709:41210/19:79648 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.ccsenet.org/journal/index.php/mas/article/view/0/40749" target="_blank" >http://www.ccsenet.org/journal/index.php/mas/article/view/0/40749</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5539/mas.v13n10p60" target="_blank" >10.5539/mas.v13n10p60</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictive Mapping of Soil Properties for Precision Agriculture Using Geographic Information System (GIS) Based Geostatistics Models
Popis výsledku v původním jazyce
In precision Agriculture, geostatistical methods as a predictive tool have been extensively utilized. The approach estimates soil properties spatial variability and dependency. This study was carried out in Ovia north east Local Government Area of Edo State of Nigeria in order to map soil properties Sand, Clay, pH, OC, P, N and CEC and redict their spatial variability. Twenty nine 29 soil samples were collected randomly from Typic Kandiudults soil type under three different land use, teak forest plantation, shrub, and arable farm. The soil samples were air dried and passed through a 2 mm sieve before being analyzed for pH(CaCl2), SOC, Sand, Clay, Phosphorus, Nitrogen, and CEC. Generated data were statistically and geostatistically computed to explain the spatial variability of soil properties. The traditional method of soil analysis and interpretation are tedious, time-consuming with escalating budgets thus geostatical approach. Available phosphorus yielded large variability with CV=57,08% followed
Název v anglickém jazyce
Predictive Mapping of Soil Properties for Precision Agriculture Using Geographic Information System (GIS) Based Geostatistics Models
Popis výsledku anglicky
In precision Agriculture, geostatistical methods as a predictive tool have been extensively utilized. The approach estimates soil properties spatial variability and dependency. This study was carried out in Ovia north east Local Government Area of Edo State of Nigeria in order to map soil properties Sand, Clay, pH, OC, P, N and CEC and redict their spatial variability. Twenty nine 29 soil samples were collected randomly from Typic Kandiudults soil type under three different land use, teak forest plantation, shrub, and arable farm. The soil samples were air dried and passed through a 2 mm sieve before being analyzed for pH(CaCl2), SOC, Sand, Clay, Phosphorus, Nitrogen, and CEC. Generated data were statistically and geostatistically computed to explain the spatial variability of soil properties. The traditional method of soil analysis and interpretation are tedious, time-consuming with escalating budgets thus geostatical approach. Available phosphorus yielded large variability with CV=57,08% followed
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Modern Applied Science
ISSN
1913-1844
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
60-77
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—