Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F20%3A84470" target="_blank" >RIV/60460709:41210/20:84470 - isvavai.cz</a>
Výsledek na webu
<a href="https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-07188-4" target="_blank" >https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-07188-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12864-020-07188-4" target="_blank" >10.1186/s12864-020-07188-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine
Popis výsledku v původním jazyce
Background. Genomic selection (GS) or genomic prediction is a promising approach for tree breeding to obtain higher genetic gains by shortening time of progeny testing in breeding programs. As proof of concept for Scots pine (Pinus sylvestris L.), a genomic prediction study was conducted with 694 individuals representing 183 full sib families that were genotyped with genotyping by sequencing (GBS) and phenotyped for growth and wood quality traits. 8719 SNPs were used to compare different genomic with pedigree prediction models. Additionally, four prediction efficiency methods were used to evaluate the impact of genomic breeding value estimations by assigning diverse ratios of training and validation sets, as well as several subsets of SNP markers. Results. Genomic Best Linear Unbiased Prediction (GBLUP) and Bayesian Ridge Regression (BRR) combined with expectation maximization (EM) imputation algorithm showed slightly higher prediction efficiencies than Pedigree Best Linear Unbiased Prediction (PBLUP
Název v anglickém jazyce
Evaluation of the efficiency of genomic versus pedigree predictions for growth and wood quality traits in Scots pine
Popis výsledku anglicky
Background. Genomic selection (GS) or genomic prediction is a promising approach for tree breeding to obtain higher genetic gains by shortening time of progeny testing in breeding programs. As proof of concept for Scots pine (Pinus sylvestris L.), a genomic prediction study was conducted with 694 individuals representing 183 full sib families that were genotyped with genotyping by sequencing (GBS) and phenotyped for growth and wood quality traits. 8719 SNPs were used to compare different genomic with pedigree prediction models. Additionally, four prediction efficiency methods were used to evaluate the impact of genomic breeding value estimations by assigning diverse ratios of training and validation sets, as well as several subsets of SNP markers. Results. Genomic Best Linear Unbiased Prediction (GBLUP) and Bayesian Ridge Regression (BRR) combined with expectation maximization (EM) imputation algorithm showed slightly higher prediction efficiencies than Pedigree Best Linear Unbiased Prediction (PBLUP
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC GENOMICS
ISSN
1471-2164
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
0-0
Kód UT WoS článku
000594316500005
EID výsledku v databázi Scopus
2-s2.0-85096037889