Self-organizing map artificial neural networks and sequential Gaussian simulation technique for mapping potentially toxic element hotspots in polluted mining soils
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F21%3A84641" target="_blank" >RIV/60460709:41210/21:84641 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0375674220306403" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0375674220306403</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.gexplo.2020.106680" target="_blank" >10.1016/j.gexplo.2020.106680</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-organizing map artificial neural networks and sequential Gaussian simulation technique for mapping potentially toxic element hotspots in polluted mining soils
Popis výsledku v původním jazyce
The application of multivariate geostatistical and statistical methods remain valuable tools for environmental pollution assessment. In particular, stochastic simulation techniques like sequential Gaussian simulation SGS and the self organizing map artificial neural networks SeOM ANNs have facilitated the understanding of the spatial distribution of potentially toxic elements PTEs in polluted soils. However, there is a dearth of literature on the application of SGS and SeOM ANN in mapping potentially toxic elements PTE in heavily polluted mining and smelter affected floodplain soils. This study shows the applicability SGS and SeOM ANN which is a powerful visualization tool for the categorization of PTEs Cadmium Cd, Arsenic As, Antimony Sb, Lead Pb and Zinc Zn levels together with selected soil properties oxidizable carbon Cox and soil reaction pH H2O in one of the most polluted mining floodplain soils in Europe. A k means algorithm was used to classify distinct clusters which were visually unclear ba
Název v anglickém jazyce
Self-organizing map artificial neural networks and sequential Gaussian simulation technique for mapping potentially toxic element hotspots in polluted mining soils
Popis výsledku anglicky
The application of multivariate geostatistical and statistical methods remain valuable tools for environmental pollution assessment. In particular, stochastic simulation techniques like sequential Gaussian simulation SGS and the self organizing map artificial neural networks SeOM ANNs have facilitated the understanding of the spatial distribution of potentially toxic elements PTEs in polluted soils. However, there is a dearth of literature on the application of SGS and SeOM ANN in mapping potentially toxic elements PTE in heavily polluted mining and smelter affected floodplain soils. This study shows the applicability SGS and SeOM ANN which is a powerful visualization tool for the categorization of PTEs Cadmium Cd, Arsenic As, Antimony Sb, Lead Pb and Zinc Zn levels together with selected soil properties oxidizable carbon Cox and soil reaction pH H2O in one of the most polluted mining floodplain soils in Europe. A k means algorithm was used to classify distinct clusters which were visually unclear ba
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geochemical Exploration
ISSN
0375-6742
e-ISSN
1879-1689
Svazek periodika
222
Číslo periodika v rámci svazku
mar
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
0-0
Kód UT WoS článku
000612235100003
EID výsledku v databázi Scopus
2-s2.0-85096953213