Assessing the impact of sampling strategy in random forest-based predicting of soil nutrients: a study case from northern Morocco
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F22%3A92304" target="_blank" >RIV/60460709:41210/22:92304 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/10106049.2022.2048091" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10106049.2022.2048091</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10106049.2022.2048091" target="_blank" >10.1080/10106049.2022.2048091</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing the impact of sampling strategy in random forest-based predicting of soil nutrients: a study case from northern Morocco
Popis výsledku v původním jazyce
In this work, we tested different combinations of sampling strategies, random sampling and conditioned Latin Hypercube sampling and sample ratios to predict soil phosporus and potassium contents, previously estimated using dtandard laboratory protocols. Other environmental covariates, used as input data for prediction, were obtained from different sources (multispectral Landsat-OLI 8 image, WorldClim database, ISRIC soil database, and ASTER-GDEM). Our findings showed that random sampling was suitable for predicting phosphorus, while the conditioned Latin Hypercube sampling was suitable for predicting potassium. Furthermore, we observed that when the sample ratio increased from 10 to 25%, model accuracy improved in random sampling and cLHS for phosphorus and potassium prediction. However, before generalizing these findings, we recommend that further studies be conducted under different conditions (climate, soil types and parent materials) and testing other sample ratios to determine the best sampling strategy with the optimum ratio to predict soil nutrients better.
Název v anglickém jazyce
Assessing the impact of sampling strategy in random forest-based predicting of soil nutrients: a study case from northern Morocco
Popis výsledku anglicky
In this work, we tested different combinations of sampling strategies, random sampling and conditioned Latin Hypercube sampling and sample ratios to predict soil phosporus and potassium contents, previously estimated using dtandard laboratory protocols. Other environmental covariates, used as input data for prediction, were obtained from different sources (multispectral Landsat-OLI 8 image, WorldClim database, ISRIC soil database, and ASTER-GDEM). Our findings showed that random sampling was suitable for predicting phosphorus, while the conditioned Latin Hypercube sampling was suitable for predicting potassium. Furthermore, we observed that when the sample ratio increased from 10 to 25%, model accuracy improved in random sampling and cLHS for phosphorus and potassium prediction. However, before generalizing these findings, we recommend that further studies be conducted under different conditions (climate, soil types and parent materials) and testing other sample ratios to determine the best sampling strategy with the optimum ratio to predict soil nutrients better.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geocarto Imnternational
ISSN
1010-6049
e-ISSN
1010-6049
Svazek periodika
37
Číslo periodika v rámci svazku
26
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
14
Strana od-do
11209-11222
Kód UT WoS článku
000769901700001
EID výsledku v databázi Scopus
2-s2.0-85126724711