Mechanisms of As, Cd, Pb, and Zn hyperaccumulation by plants and their effects on soil microbiome in the rhizosphere
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F23%3A96531" target="_blank" >RIV/60460709:41210/23:96531 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3389/fenvs.2023.1157415" target="_blank" >https://doi.org/10.3389/fenvs.2023.1157415</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fenvs.2023.1157415" target="_blank" >10.3389/fenvs.2023.1157415</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanisms of As, Cd, Pb, and Zn hyperaccumulation by plants and their effects on soil microbiome in the rhizosphere
Popis výsledku v původním jazyce
Excess potentially toxic elements (PTEs), including arsenic (As), cadmium (Cd), lead (Pb), and zinc (Zn), above permissible limits in the environment, have detrimental effects on trophic levels. Hence, imperative to devise advertent measures to address this situation, especially in the soil ecosystem: the major reservoir of many PTEs. Using aerial plant parts (shoot) to accumulate As, Cd, Pb, and Zn - hyperaccumulators are considered a permanent approach to PTE removal from soils. This communication expatiated the principles that govern the hyperaccumulation of plants growing on As, Cd, Pb, and Zn-contaminated soils. The contribution of soil microbial communities during hyperaccumulation is well-elaborated to support the preference for this remediation approach. The study confirms a flow direction involving PTE uptake–translocation–tolerance–detoxification by hyperaccumulators. Rhizosphere microbes exhibit a direct preference for specific hyperaccumulators, which is associated with root exudations, while the resultant formation of chelates and solubility of PTEs, with soil physicochemical properties, including pH and redox potential, promote uptake. Different compartments of plants possess specialized transporter proteins and gene expressions capable of influx and efflux of PTEs by hyperaccumulators. After PTE uptake, many hyperaccumulators undergo cellular secretion of chelates supported by enzymatic catalysis and high transport systems with the ability to form complexes as tolerance and detoxification mechanisms. The benefits of combining hyperaccumulators with beneficial microbes such as endophytes and other rhizosphere microbes for PTE removal from soils are vital in enhancing plant survival and growth, minimizing metal toxicity, and supplying nutrients. Inoculation of suitable rhizosphere microbes can promote efficient cleaning of PTEs contaminated sites utilizing hyperaccumulator plants.
Název v anglickém jazyce
Mechanisms of As, Cd, Pb, and Zn hyperaccumulation by plants and their effects on soil microbiome in the rhizosphere
Popis výsledku anglicky
Excess potentially toxic elements (PTEs), including arsenic (As), cadmium (Cd), lead (Pb), and zinc (Zn), above permissible limits in the environment, have detrimental effects on trophic levels. Hence, imperative to devise advertent measures to address this situation, especially in the soil ecosystem: the major reservoir of many PTEs. Using aerial plant parts (shoot) to accumulate As, Cd, Pb, and Zn - hyperaccumulators are considered a permanent approach to PTE removal from soils. This communication expatiated the principles that govern the hyperaccumulation of plants growing on As, Cd, Pb, and Zn-contaminated soils. The contribution of soil microbial communities during hyperaccumulation is well-elaborated to support the preference for this remediation approach. The study confirms a flow direction involving PTE uptake–translocation–tolerance–detoxification by hyperaccumulators. Rhizosphere microbes exhibit a direct preference for specific hyperaccumulators, which is associated with root exudations, while the resultant formation of chelates and solubility of PTEs, with soil physicochemical properties, including pH and redox potential, promote uptake. Different compartments of plants possess specialized transporter proteins and gene expressions capable of influx and efflux of PTEs by hyperaccumulators. After PTE uptake, many hyperaccumulators undergo cellular secretion of chelates supported by enzymatic catalysis and high transport systems with the ability to form complexes as tolerance and detoxification mechanisms. The benefits of combining hyperaccumulators with beneficial microbes such as endophytes and other rhizosphere microbes for PTE removal from soils are vital in enhancing plant survival and growth, minimizing metal toxicity, and supplying nutrients. Inoculation of suitable rhizosphere microbes can promote efficient cleaning of PTEs contaminated sites utilizing hyperaccumulator plants.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000845" target="_blank" >EF16_019/0000845: Centrum pro studium vzniku a transformací nutričně významných látek v potravním řetězci v interakci s potenciálně rizikovými látkami antropogenního původu: komplexní posouzení rizika kontaminace půdy pro kvalitu zemědělské produkce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Environmental Sciences
ISSN
2296-665X
e-ISSN
2296-665X
Svazek periodika
11
Číslo periodika v rámci svazku
APR 17 2023
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000980613400001
EID výsledku v databázi Scopus
2-s2.0-85159015127