Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F23%3A97370" target="_blank" >RIV/60460709:41210/23:97370 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/23:00131498 RIV/00020702:_____/23:N0000078
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352009423000548" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352009423000548</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geodrs.2023.e00658" target="_blank" >10.1016/j.geodrs.2023.e00658</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic
Popis výsledku v původním jazyce
Carbon dioxide, the most produced anthropogenic greenhouse gas, could be moderated by sequestering carbon in forest soils. Forest soils store more carbon than there is in the atmosphere. Thus, the smallest variation in soil carbon levels could trigger a significant change in atmospheric carbon. This study focused on predicting the spatial distribution of carbon stocks within surface organic and mineral topsoil and subsoil layers of the forty-one natural forest areas of the Czech Republic. Cubist and Random Forests machine learning algorithms were employed with a grid search hyper tuning to improve prediction accuracy. We used the five-fold cross-validation to verify the model accuracy using Root Mean Square Error (RMSE), coefficient of determination (R2), and Mean Absolute Error (MAE). Random Forests yielded lower RMSE of 1.10 kg/m2, 3.85 kg/m2, and 4.77 kg/m2 in the surface organic horizon (F + H layer), mineral topsoil (0-30 cm layers) and subsoil horizons (30-80 cm layers), respectively, compared to the RMSE values of Cubist, which were 1.14 kg/m2, 3.90 kg/m2, and 4.91 kg/m2 in the surface organic, mineral topsoil and subsoil horizons, respectively. R2 values of both models were low for all three horizons considered. Random Forests were the preferred algorithm for SOC stock prediction in all layers of the forest soils. Cubist predicted the spatial distribution of SOC stocks with more covariates than Random Forests. Altitude was the most important covariate for the spatial distribution of SOC stocks for both Random Forests and Cubist in all soil horizons considered. High SOC stocks for all soil horizons are spatially concentrated in soil horizons along the country borders in the mountaineous natural forest areas.
Název v anglickém jazyce
Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic
Popis výsledku anglicky
Carbon dioxide, the most produced anthropogenic greenhouse gas, could be moderated by sequestering carbon in forest soils. Forest soils store more carbon than there is in the atmosphere. Thus, the smallest variation in soil carbon levels could trigger a significant change in atmospheric carbon. This study focused on predicting the spatial distribution of carbon stocks within surface organic and mineral topsoil and subsoil layers of the forty-one natural forest areas of the Czech Republic. Cubist and Random Forests machine learning algorithms were employed with a grid search hyper tuning to improve prediction accuracy. We used the five-fold cross-validation to verify the model accuracy using Root Mean Square Error (RMSE), coefficient of determination (R2), and Mean Absolute Error (MAE). Random Forests yielded lower RMSE of 1.10 kg/m2, 3.85 kg/m2, and 4.77 kg/m2 in the surface organic horizon (F + H layer), mineral topsoil (0-30 cm layers) and subsoil horizons (30-80 cm layers), respectively, compared to the RMSE values of Cubist, which were 1.14 kg/m2, 3.90 kg/m2, and 4.91 kg/m2 in the surface organic, mineral topsoil and subsoil horizons, respectively. R2 values of both models were low for all three horizons considered. Random Forests were the preferred algorithm for SOC stock prediction in all layers of the forest soils. Cubist predicted the spatial distribution of SOC stocks with more covariates than Random Forests. Altitude was the most important covariate for the spatial distribution of SOC stocks for both Random Forests and Cubist in all soil horizons considered. High SOC stocks for all soil horizons are spatially concentrated in soil horizons along the country borders in the mountaineous natural forest areas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
GEODERMA REGIONAL
ISSN
2352-0094
e-ISSN
2352-0094
Svazek periodika
34
Číslo periodika v rámci svazku
SEP 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
001029542300001
EID výsledku v databázi Scopus
2-s2.0-85161722925