Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F23%3A97370" target="_blank" >RIV/60460709:41210/23:97370 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/23:00131498 RIV/00020702:_____/23:N0000078

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352009423000548" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352009423000548</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.geodrs.2023.e00658" target="_blank" >10.1016/j.geodrs.2023.e00658</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic

  • Popis výsledku v původním jazyce

    Carbon dioxide, the most produced anthropogenic greenhouse gas, could be moderated by sequestering carbon in forest soils. Forest soils store more carbon than there is in the atmosphere. Thus, the smallest variation in soil carbon levels could trigger a significant change in atmospheric carbon. This study focused on predicting the spatial distribution of carbon stocks within surface organic and mineral topsoil and subsoil layers of the forty-one natural forest areas of the Czech Republic. Cubist and Random Forests machine learning algorithms were employed with a grid search hyper tuning to improve prediction accuracy. We used the five-fold cross-validation to verify the model accuracy using Root Mean Square Error (RMSE), coefficient of determination (R2), and Mean Absolute Error (MAE). Random Forests yielded lower RMSE of 1.10 kg/m2, 3.85 kg/m2, and 4.77 kg/m2 in the surface organic horizon (F + H layer), mineral topsoil (0-30 cm layers) and subsoil horizons (30-80 cm layers), respectively, compared to the RMSE values of Cubist, which were 1.14 kg/m2, 3.90 kg/m2, and 4.91 kg/m2 in the surface organic, mineral topsoil and subsoil horizons, respectively. R2 values of both models were low for all three horizons considered. Random Forests were the preferred algorithm for SOC stock prediction in all layers of the forest soils. Cubist predicted the spatial distribution of SOC stocks with more covariates than Random Forests. Altitude was the most important covariate for the spatial distribution of SOC stocks for both Random Forests and Cubist in all soil horizons considered. High SOC stocks for all soil horizons are spatially concentrated in soil horizons along the country borders in the mountaineous natural forest areas.

  • Název v anglickém jazyce

    Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic

  • Popis výsledku anglicky

    Carbon dioxide, the most produced anthropogenic greenhouse gas, could be moderated by sequestering carbon in forest soils. Forest soils store more carbon than there is in the atmosphere. Thus, the smallest variation in soil carbon levels could trigger a significant change in atmospheric carbon. This study focused on predicting the spatial distribution of carbon stocks within surface organic and mineral topsoil and subsoil layers of the forty-one natural forest areas of the Czech Republic. Cubist and Random Forests machine learning algorithms were employed with a grid search hyper tuning to improve prediction accuracy. We used the five-fold cross-validation to verify the model accuracy using Root Mean Square Error (RMSE), coefficient of determination (R2), and Mean Absolute Error (MAE). Random Forests yielded lower RMSE of 1.10 kg/m2, 3.85 kg/m2, and 4.77 kg/m2 in the surface organic horizon (F + H layer), mineral topsoil (0-30 cm layers) and subsoil horizons (30-80 cm layers), respectively, compared to the RMSE values of Cubist, which were 1.14 kg/m2, 3.90 kg/m2, and 4.91 kg/m2 in the surface organic, mineral topsoil and subsoil horizons, respectively. R2 values of both models were low for all three horizons considered. Random Forests were the preferred algorithm for SOC stock prediction in all layers of the forest soils. Cubist predicted the spatial distribution of SOC stocks with more covariates than Random Forests. Altitude was the most important covariate for the spatial distribution of SOC stocks for both Random Forests and Cubist in all soil horizons considered. High SOC stocks for all soil horizons are spatially concentrated in soil horizons along the country borders in the mountaineous natural forest areas.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40104 - Soil science

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    GEODERMA REGIONAL

  • ISSN

    2352-0094

  • e-ISSN

    2352-0094

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    SEP 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    001029542300001

  • EID výsledku v databázi Scopus

    2-s2.0-85161722925